
“ssh_host_dsa_key” and the matching
“ssh_host_ dsa_key.pub”.

Only the root user should possess
read/write access to the server’s private
keys (without the “.pub” suffix). The
server uses a total of six keyfiles to
authenticate against various clients. If a
key file is missing, a client that requires a
specific key type will not be able to
connect. But missing server keys can be
created later, if needed, using the
“ssh-keygen” command.

The configuration file found at
“/etc/ssh/ssh_config” contains system
defaults for the client program “ssh”;
although it tends to be more or less
empty under normal circumstances.
Users can configure their clients via
“~/.ssh/config” (on the command line).

Configuring the Server
The SSH server, “sshd”, normally runs as
an independent daemon, however, it can
be launched via inetd. The daemon

method will provide better performance,
as “sshd” needs to calculate a server key
for SSH1 when launched. However, the
inetd variant does provide a practical
fallback solution. If the daemon crashes,
an admin user will still be able to log on
remotely and solve the issue. Of course,
the second server will need to listen on a
different port (“sshd -i -p port”). You can
also use the config file to change the port
number (Listing 1, line 8).

For multi-homed hosts the admin user
can specify the address on which “sshd”
will listen. The daemon will bind to any
and all available addresses by default.
You can change the default behaviour
using the “ListenAddress IP” syntax (line
11); multiple occurrences of this option
are permissible.

“sshd” normally uses syslog to store
log output in “/var/log/auth.log” at
the “LogLevel INFO” priority level.
Additional log output is useful for
troubleshooting: Use “VERBOSE” to

50 October 2002 www.linux-magazine.com

You still occasionally come across
them – computer networks where
protocols such as rsh, rlogin,

telnet, FTP and POP3 will transmit
passwords in clear text across the LAN
and into the Web. It is a well-known fact
that any host in the path between the
client and the server can view these
passwords, and packet sniffers such as
Sniffit or Dsniff can make it child’s play
to do so.

Networks that rely on these traditional
services are low-hanging fruit for
crackers or script kiddies, and the
services we just mentioned are the top
targets for exploitation. Having said that,
there is no real reason to expose
a network to this risk. SSH provides
a viable alternative with far more
functionality than rlogin, rcp, or telnet
could offer.

In addition to providing secure
authentification for hosts and users, SSH
offers encrypted data transfers and
recognizes attempts at manipulation.
The term SSH refers both to the
cryptographic protocol and to its
implementations. In contrast to IPSec,
where encryption occurs at IP level, SSH
provides encryption within the
application itself.

Installing SSH
Most current Linux distributions include
OpenSSH packages. If you are a Debian
user, you can type “dpkg -L ssh” to
discover which SSH files are currently
installed. The equivalent command for
any RPM based systems would be
“rpm -ql openssh”.

The post-installation script creates the
server keypairs (private and public keys)
for both versions of the protocol and
stores them in the “ssh_host_key” and
“ssh_host_key.pub” files for SSH1. SSH2
can utilize RSA and DSA keys, storing
RSA keys in “ssh_host_rsa_key” and
“ssh_host_rsa_key.pub” and DSA keys in

OpenSSH has become the standard tool for providing encrypted remote

access. But you will need background knowledge if you intend to implement

the security features that OpenSSH offers. BY ANDREW JONES

OpenSSH from the Administrator’s Perspective

Out of Sight

OpenSSHSYSADMIN

Andrew Jones is a contractor to the
Linux Information Systems AG
http://www.linux-ag.com in Berlin.
He has been using Open Source
Software for many years.

Andrew spends most of his scarce
leisure resources looking into Linux
and related Open Source projects.

T
H

E
 A

U
T

H
O

R

choose the level immediately above
“INFO” or failing that “DEBUG” to locate
the cause for failed connections server
side (lines 31 and 32).

When configuring the server you
can specify which protocol version is
announced during handshake. SSH2
has been default since OpenSSH 2.9,
followed by SSH 1: “Protocol 2,1” (line
9). To permit SSH2 only, you will need to
change this line to “Protocol 2”.

Authentification Procedure
Both protocol versions provide SSH with
various methods of authenticating users.
The most sophisticated method is the
public key approach, which you enable
using “PubkeyAuthentication yes” (line
35). In this case users will store their
public keys in their home directories and
authenticate using the corresponding
private key. Server defaults and the
OpenSSH packages provided by many

distributions also permit password based
authentification schemes, which are
enabled using “PasswordAuthentication
yes” (line 50). Very few admins change
this default which leads to many users
working with “ssh” without ever
thinking about SSH’s best features.

If you require strict logon security, you
can specify “PasswordAuthentication no”.
SSH encrypts any passwords that cross
the wire, but their inherent weaknesses
still apply (too short, too easy to guess,
rarely changed, and so on). There have
been some attempts to guess passwords
indirectly by performing timing analysis
on the encrypted data, thus removing the
need to decrypt the data (SSH Keystroke
Timing Attack). Password based login can
only be disabled entirely by additionally
stipulating “PAMAuthenticationViaKbdInt
no” (compare to line 58).

Insecure rhost authentication is
disabled by default for the server

(lines 38 through 41). The trusted
host authentication means that the
“/etc/hosts.equiv” and “~/.rhosts”
files include those hosts considered
trustworthy enough to log on without
authenticating – the server trusts the
client computer and the authentication
process that has occurred on the client.

Using rhosts, the server only checks
the IP address and port number of the
client. If the port number is below 1024,
the client process on Unix hosts must be
root equivalent. This is intended to
prevent simple user programs from
spoofing their identity to the server.
However, the whole model works on the
assumption that the IP address is
genuine – an assumption that cannot be
safely made in today’s networks.

Reciprocal Trust
Relationships between Hosts
SSH provides a far superior variant on
the host based authentication scheme.
The client program is required to
authenticate with the host key of the
client computer. The client will need root
privileges to access this key (the set UID
bit needs to be set). In this case SSH also
trusts the hosts listed in “~/.shosts” and
“/etc/shosts.equiv”; however, this
setting is also disabled by default (lines
42 through 45).

In most cases you will want to avoid
users logging on as root. If multiple users
work with the root account it is
extremely difficult to determine which
administrator has just logged on. The
“PermitRootLogin no” (line 31) permits
logging on by normal users only. If you
happen to be a user with administrative
privileges, you can use “su” to step up
to this level temporarily.

OpenSSH handles not only authenti-
fication but also the other steps involved
in logging on to the system (launching a

51www.linux-magazine.com October 2002

SYSADMINOpenSSH

The designer of the protocol and the author of the first implementation was Tatu Ylönen, who
went on to found SSH Communications Security Ltd. He released SSH 1.0 for Unix in June 1995.
Ylönens software was freely available up to version 1.2.12, but licensing became increasingly
restrictive.Two variants of version 1 of this protocol were developed and released as versions 1.3
and 1.5. SSH.com stopped maintaining and developing the commercial implementation of the
protocol version 1 in May 2001.
Offshoots – OpenSSH
The OpenSSH SSH implementation was originally based on Ylönens SSH 1.2.12 sources, which
were provided without any restrictions on their use, however, it uses the free SSL implementation,
OpenSSL, as its cryptobase.The OpenBSD Group is responsible for the OpenSSH project, although
a whole group of independent developers are now involved in it.The basic version of OpenSSH
(as of this writing currently at 3.1), that runs on OpenBSD systems only, has been ported to a
variety of platforms. A modified version, referred to as portable version 3.1p1, was implemented
for this purpose.
As of version 2.1.0 (dated May 2000) OpenSSH can handle SSH version 2 in addition to version 1.
In contrast to commercial SSH both versions are available in a single server binary. If an older
client attempts to connect to the server, the server switches to compatability mode as defined
in the IETF “SSH Transport Layer Protocol”draft.The server indicates its compatibility mode
capability by means of a handshake string,“SSH-1.99”.You can “telnet host 22”to view the string,
or simply type “ssh -v host”(“Remote protocol version 1.99”is displayed in this case).
Version 2 of the protocol is documented in various IETF drafts; the architecture is described in
“draft-ietf-secsh-architecture-09.txt”. All current drafts are available from the IETF website [3].

SSH History

Figure 1: The server transmits its public key to the client (1), the client compares it to the expected key (2) and authenticates the server (3, 4) using its private
key. Any ensuing data will be encrypted before transmission (5); this includes any passwords that may be used

ssh_known_hosts_key.pub
Server transmits Client

compares keys
2 1

/etc/ssh/ssh_host_rsa_key.pub
/etc/ssh/ssh_host_rsa_key3 Server authenticates

Server

Server uses private
key for authentication4Encrypted session5

/etc/ssh/ssh_known/hosts
~/.ssh/known_hosts

Client

keypairs. If you launch this tool without
any arguments, it will create an SSH1
compatible RSA keypair and store it in
“~/.ssh/”. The files created by this
syntax are called “identity” (private key)
and “identity.pub” (public key). As
already mentioned, these files apply to
SSH 1 only, but OpenSSH also uses the
version 2 protocol, which is more secure.

DSA keys were introduced into SSH 2.
To create a DSA keypair use the
“ssh-keygen -t dsa” command to create
the “~/.ssh/id_dsa” (private key,
version 2) and “~/.ssh/id_dsa.pub”
(public key, version 2) files. For RSA keys
for SSH 2, type “ssh-keygen -t rsa”. In
this case the file names will include the
“rsa” string.

Any files containing private keys should
only be readable/writeable to their users.
OpenSSH checks these privileges during
key evaluation and refuses the connection
if the privileges are too loose.

Encrypting Keys
Access privileges for the key files provide
effective protection against inquisitive
users on the system, however, this is no
defence against a user with root access.
If the home directory is on an NFS

server, the key will even be transferred
across the wire in plain text from the
NFS server to the local workstation. And
this would defeat any advantages gained
from key based authentication – but
there is a solution to this issue.

Keys can be passphrase protected
on creation. “ssh-keygen” uses the
passphrase to encrypt the private key
assuring that it is protected from any
snoopers – not even root can decrypt this
data without the passphrase. The
passphrase can be modified later using
“ssh-keygen -p -f ~/.ssh/id_dsa”.

The public key must reside in
“~/.ssh/authorized_keys” on the target
host. This allows the server to verify that
the public key really does belong to the
user attempting to log on. In the case of
OpenSSH servers prior to version 3.0 a
file called “~/.ssh/authorized_keys2”
with the same content is also required
for SSH-2 keys.

As the name implies the public does
not need to be kept a secret. So the
admin of the target system can safely
store the key in the home directory, after
ascertaining that the key really is the
genuine article. Just sending an email
with the key as an attachment is fairly
risky, however, you could use GPG to
sign the mail. Alternatively the admin
user could compare the fingerprint
“ssh-keygen -l -f keyfile” of the received
key with the original fingerprint. A short
phonecall would be sufficient to deal
with this issue.

Behind the Barricades
It should now be possible to log on to the
target system:

ssh -v user@hostcomputer

The “-v” option makes OpenSSH output
debugging information, which can be

52 October 2002 www.linux-magazine.com

session including any required entries in
logfiles, launching shells and so on). If
you enable the “UseLogin yes” option,
OpenSSH will access the system logon
program to do so. This makes sense in
some environments – where “login”
applies restrictions of which “sshd” is
not aware. However, this option also has
a few security issues. CERT has reported
security leakholes on two occasions [6].

Working with Keypairs
Public key authentication has several
advantages in comparison with a simple
password logon scheme – although it
does mean some additional setup tasks
for the user. Administrators may also
need to explain one or two facts to their
users, however, you would expect most
users to be able to adjust. Three steps are
required before logging on remotely with
an RSA or DSA key:
• The user must generate a keypair

(public and private keys).
• The public key must be copied to the

“~/.ssh/authorized_keys” file on the
remote host.

• The private key must be available on
the local host.

The “ssh-keygen” is used to create

OpenSSHSYSADMIN

SSH has also (and unfortunately) had its share of (in)security incidents.Version 1 of the protocol is
susceptible to man in the middle attacks, as it relies on cryptographically weak CRC 32 encoding
to ensure packet integrity. Specially crafted data packets that include the correct CRC enable an
attacker to inject data into an encrypted session without SSH noticing it.
The “SSH CRC32 attack detection”facility was designed to detect injection attacks. However, this
code was found to contain a buffer overflow that allowed remote attackers to gain root on
several older versions. CERT reports that these older versions are still being systematically sought
out and exploited on a large scale [4].
Version 2 completely removed the CRC vulnerability.The new protocol relies on a crypto-
graphically robust MAC algorithm (Message Authentication Code) – to be more precise it uses
an RFC 2104 HMAC (Keyed Hashing for Message Authentication).
OpenSSH documents security and bugfixes on the project website [5]. A recent incident showed
how important it is to install the latest stable releases of programs relevant to system security:
OpenSSH 3.0.2 is susceptible to an off by one error, which can allow an authenticated user to
achieve root privileges (refer to “InSecurity News”in this issue).

SSH and Security

Figure 2: The user “kh” logs on to the host “vaio”, coming from “lux” via
“ssh”. The usual system messages are displayed

Figure 3: When you log on to an unknown host SSH prompts you to confirm
that you want to trust the server key.“kh” fails to confirm which leads to the
connection being terminated

extremely useful if any issues occur. The
SSH program running locally then
prompts the user for the passphrase for
the private key belonging to the target
account. Assuming that the correct
passphrase is entered, SSH will then
authenticate the user on the target host,
and the user will be placed in the Shell
environment he expects (see Figure 2).
The client can also specify the protocol
type (SSH 2 or SSH 1) using the “-2” and
“-1” flags:

kh@lux:~$ ssh -2 kh@vaio

The login does not need to be the same
locally as on the remote host. Admins

will generally prefer to work as a normal
user locally, but need to be root on a
remote host. No problem for SSH:

kh@lux:~$ ssh root@vaio

You can also store your own public key
in “~/.ssh/authorized_keys”, in the
home directory for root on the target
system. In this case you will need to set
“PermitRootLogin yes” in “sshd_config”
(line 31 in Listing 1).

Keypairs are not only available for
users, but also for hosts (see Figure 1).
This allows the client to verify that it is
really connected to the required server.
To do so, during connection setup the

remote SSH daemon transmits its public
key to the client and authenticates using
its own private key.

The “known_hosts” Security
Database
The client stores the host key in the text
file “~/.ssh/known_hosts”. The SSH 2
drafts specify that SSH clients must
request confirmation by the user, in case
of unknown servers, that the user really
does want to connect to the target. If
the user cancels, the connection is
terminated (see Figure 3).

Users should avoid typing “yes”
without considering their options at this
point – after all this prompt is one of

53www.linux-magazine.com October 2002

SYSADMINOpenSSH

Listing 1: Server Configuration “sshd_config”
01 # $OpenBSD:

sshd_config,v 1.42 2001/09/20
20:57:51 mouring Exp $

02
03 # This sshd was compiled with

PATH=/usr/bin:/bin:/usr/sbin:
/sbin

04
05 # This is the sshd server

system-wide configuration
file. See sshd(8)

06 # for more information.
07
08 Port 22
09 #Protocol 2,1
10 #ListenAddress 0.0.0.0
11 #ListenAddress ::
12
13 # HostKey for protocol

version 1
14 HostKey /etc/ssh_host_key
15 # HostKeys for protocol

version 2
16 HostKey /etc/ssh_host_rsa_key
17 HostKey /etc/ssh_host_dsa_key
18
19 # Lifetime and size of

ephemeral version 1 server
key

20 KeyRegenerationInterval 3600
21 ServerKeyBits 768
22
23 # Logging
24 SyslogFacility AUTH
25 LogLevel INFO
26 #obsoletes QuietMode and

FascistLogging

27
28 # Authentication:
29
30 LoginGraceTime 600
31 PermitRootLogin yes
32 StrictModes yes
33
34 RSAAuthentication yes
35 PubkeyAuthentication yes
36 #AuthorizedKeysFile

%h/.ssh/authorized_keys
37
38 # rhosts authentication should

not be used
39 RhostsAuthentication no
40 # Don't read the user's

~/.rhosts and ~/.shosts files
41 IgnoreRhosts yes
42 # For this to work you will

also need host keys in
/etc/ssh_known_hosts

43 RhostsRSAAuthentication no
44 # similar for prot. version 2
45 HostbasedAuthentication no
46 # Uncomment if you don't trust

~/.ssh/known_hosts for
RhostsRSAAuthentication

47 #IgnoreUserKnownHosts yes
48
49 # To disable tunneled clear

text passwords, change to no
here!

50 PasswordAuthentication yes
51 PermitEmptyPasswords no
52
53 # Uncomment to disable s/key

passwords

54
#ChallengeResponseAuthenticat
ion no

55
56 # Uncomment to enable PAM

keyboard-interactive
authentication

57 # Warning: enabling this may
bypass the setting of
'PasswordAuthentication'

58 #PAMAuthenticationViaKbdInt
yes

59
60 # To change Kerberos options
61 #KerberosAuthentication no
62 #KerberosOrLocalPasswd yes
63 #AFSTokenPassing no
64 #KerberosTicketCleanup no
65
66 # Kerberos TGT Passing does

only work with the AFS
kaserver

67 #KerberosTgtPassing yes
68
69 X11Forwarding no
70 X11DisplayOffset 10
71 PrintMotd yes
72 #PrintLastLog no
73 KeepAlive yes
74 #UseLogin no
75
76 #MaxStartups 10:30:60
77 #Banner /etc/issue.net
78 #ReverseMappingCheck yes
79
80 Subsystem sftp

/usr/libexec/sftp-server

server key from “known_hosts”. The
next time the user connects she will
again be prompted to confirm the
identity of the server (Figure 4).

Key Management
An admin may prefer not to bother her
users with this procedure and maintain
a global “/etc/ssh/ssh_known_hosts”
file. If a host key changes, the admin
user can modify the entry in the list of
public keys.

Key authentication schemes like the
one described may make connections
safer, but you still need to input a
passphrase instead of a password. The
“ssh-agent” and “ssh-add” programs
make short work of this onerous task.
The SSH agent is a kind of cache agent
that provides access to decrypted private
keys.

It runs as a daemon and is
available only to the user that launched
it. The daemon communicates over Unix
Domain Sockets; using the environment
variables “SSH_AUTH_SOCK” and
“SSH_AGENT_PID” to let its child
processes know which socket it will use.

The X11 init scripts in many
distributions launch the SSH agent as the
parent process of the X11 session making
it available to every X11 terminal. You
can verify this by typing the following
command:

kh@lux:~$ set | grep SSH
SSH_AGENT_PID=2097
SSH_AUTH_SOCK=/tmp/U
ssh-XX70h6xH/agent.2062

If the SSH agent is not running, and is
only required in a single Shell, you can
use the following syntax:

kh@lux:~$ ssh-agent $SHELL

The SSH agent launches the “$SHELL”
subshell with the required environment
variables and then retires to the
background. Now you can use “ssh-add”
to save any number of decrypted private
keys in the cache:

kh@lux:~$ ssh-add ~/.ssh/id_dsa
Enter passphrase for U

/home/kh/.ssh/id_dsa:
Identity added: U

/home/kh/.ssh/id_dsa U
(/home/kh/.ssh/id_dsa)
kh@lux:~$

The keys are now available to the
SSH client without having to repeat
the passphrase. The following syntax
displays the keys currently being cached
by the SSH agent:

kh@lux:~$ ssh-add -l
1024 87:db:4c:0a:6a:c5:56:6b:U
74:6f:1c:8e:65:0a:ce:b2 U

/home/kh/.ssh/id_dsa (DSA)
kh@lux:~$

Typing “ssh-add -D” deletes the whole
key cache. To remove individual keys,
you can simply type the command
“sh-add -d ~/.ssh/id_dsa”.

Agent Forwarding
If you log on to various hosts in
succession, you might like to look into
the “ForwardAgent” option. This means
you can avoid storing a public/private
key combination at each step of the
way and launching additional agent
processes. A single SSH agent on a
trusted host suffices; any hosts you
connect to via this host refer back to the
“ssh-agent” at the top of the tree.

There are three ways of enabling agent
forwarding: globally using the

54 October 2002 www.linux-magazine.com

major security features of SSH. The
fingerprint can easily be used to verify
the key by calling the admin on the
target host. The admin can display the
fingerprint of the original host key by
typing “ssh-keygen -l -f keyfile”. Users
should only place keys in their
“known_hosts” files, if these fingerprints
do match (Figure 4).

Verifying the server host key provides
protection against “man in the middle”
attacks, where the attacker will
manipulate DNS or ARP, or spoof the IP
address of the genuine server so to
impersonate that server.

At the same time, the attacker
connects to the real server and relays the
data without the user noticing any
difference. Cryptography can protect
your users against attacks of this kind,
but only if they play the game. If the
client has no data on the server, it cannot
authenticate the server.

If the SSH client already knows the
genuine server’s public key – that is, the
key is stored in “known_hosts”, the
client can automatically detect an attack.
The attacker will not know the original
secret key and thus be unable to
successfully use the public key of the
required target, instead attackers would
be forced to transmit their own keys. On
comparing the key with the entry in its
key ring the client would notice a
discrepancy, warn the user (Figure 5)
and cancel the connection.

However, the warning can be harmless
– if the server key has really changed.
This occurs when an admin user
generates a new key after a disk crash
where a backup is not available, after a
hardware replacement or simply
reinstalling SSH without saving the old
key. The warning will be issued to the
client until the user removes the old

OpenSSHSYSADMIN

Figure 4: If the user is sure that the host key really does belong to the desired
target host, she can place the key in the list of trusted hosts

Figure 5: If the SSH client determines that the public key of a server has
changed, it assumes a man in the middle attack and issues a warning

“ForwardAgent yes” entry in the
“/etc/ssh/ssh_config”, for individual
users in “~/.ssh/config” or via the “-A”
option of the “ssh” command.

However, this approach does have
some negative implications. Root may be
able to perform a core dump to view the
decrypted keys – however, if you do not
trust the root account you may prefer not
to save any secrets on that machine.
Even if you decide against using the SSH
agent, root could use a trojanized SSH
client or a TTY sniffer to access the
secret data when a user is entering her
secret passphrase.

Secure File Transfer with
“scp” and “sftp”
SSH can be used for more than just
remote logins. One example of SSH’s
flexibility is its ability to copy files across
an encrypted connection. The “scp” and
“sftp” programs, which are part of the
OpenSSH suite, are provided for this
purpose. “scp” uses the same syntax as
the less secure “rcp”. Copying a local file
to a target host, type “scp localfile
user@host.remote:targetfile”. To copy in
the other direction – that is, to copy a
remote file to a local host, simply type
“scp user@host.remote:remotefile localU
target”. Just like the interactive “ssh”
tool, the command allows you to specify

a variety of options, such as the protocol
versions, the verbosity level, user names
and levels of compression.

The “sftp” program fulfills the same
task as “scp”, although its usage is
similar to a command-line “ftp” client.
You will need to enable the server
subsystem “sftp-server” in “sshd_config”
(last line in Listing 1). Most users should
feel at home using “sftp” interactively:

lux:/tmp$ sftp root@vaio
Connecting to vaio...
sftp> pwd
Remote working directory: /root
sftp>

Gftp[8] even provides a friendly GUI for
FTP and SFTP.

Backup via SSH
One feature that will appeal to
administrators is the ability to perform
backups across the wire via SSH. “scp”
or “sftp” are not required for this task as
you can pipe SSH using the shell:

tar czvf - /the/directory | U
ssh user@host "cat U

>/tmp/foo.tar.gz"

The receiving end can also write the data
directly to a tape drive:

tar cvf - /the/directory | U
ssh user@host dd of=/dev/tape

You should be aware that your tape
drive’s performance may be seriously
affected. This is caused by “dd” and the
tape drive both having to wait for data. If
the datastream is interrupted, the tape
drive has to stop and backtrack before it
can carry on writing. A small tool can
help solve this issue:

tar cvf - /the/directory | U
buffer | ssh -c blowfish U

root@vaio buffer -o /dev/tape

Buffer[9] spawns two separate processes
that independently read data from
the network and write to the tape
drive, providing caching for enhanced
performance.

In our example we also set the
OpenSSH option “-c blowfish” to enable
the extremely quick but secure Blowfish
encryption algorithm. Thus, OpenSSH
can deal with requirements for security
and speed, which are often viewed as
contradictory. ■

55www.linux-magazine.com October 2002

SYSADMINOpenSSH

A thorough review of the default configuration provided by your distribution is particularly
relevant for security programs. If you determine any discrepancies between your configuration
and Listing 1, you should ensure that they were made deliberately. In case of doubt, check “man
sshd”.You need to restart the daemon to activate any modifications made to “sshd_conf”.You
can use standard tools to check whether the daemon is running:

ps ax | grep sshd

Or alternatively:

netstat -tpan

By the way, when you restart the master “sshd”the forked SSH connections are maintained –
no need to worry about users being logged out.To find out which process is the master process,
simply view “/var/run/sshd.pid”. Of course, if the daemon fails to restart, you will no longer be
able to log on remotely via SSH.

There is an unexpected trap for computers secured independently of SSH using TCP-Wrappers
(“/etc/hosts.allow”and “/etc/hosts.deny”).“sshd”evaluates your TCP-Wrappers settings, even if
the daemon was launched independently of inetd.“sshd”makes direct use of “libwrap.a”.

On the practical side, you can supply most of the options set in “sshd.conf”as arguments on
launching the program.This allows you to test the effect of various options. Provided you launch
the test daemon on a different port than usual, you can even perform tests without interfering
with your production server.You simply set your client to access the new port:“ssh -p port”.

Checking Your Configuration

[1] OpenSSH project website:
http://www.openssh.com

[2] SSH newsgroup: news:comp.security.ssh

[3] Current drafts on SecSH:
http://www.ietf.org/ids.by.wg/secsh.html

[4] CERT Incident Note on SSH exploits:
http://www.cert.org/incident_notes/U
IN-2001-12.html

[5] Security history of OpenSSH:
http://www.openssh.com/security.html

[6] “UseLogin”vulnerabilities:
http://www.kb.cert.org/vuls/id/157447,
http://www.kb.cert.org/vuls/id/40327

[7] Daniel J. Barrett and Richard E. Silverman,
“SSH:The Secure Shell”, O’Reilly 2001,
http://www.snailbook.com/

[8] Gftp, GUI for SFTP: http://gftp.seul.org/

[9] Buffer: http://packages.debian.org/U
testing/utils/buffer.html

[10]SSH FAQ: http://www.employees.org/U
~satch/ssh/faq/ssh-faq.html

[11] Beginner-friendly series on OpenSSH:
http://www.mandrakeuser.org/docs/U
secure/sssh.html

INFO

