
its name from regular expressions. The
ed command g/re/p prints every line in a
file that contains the regular expression
re – and that is exactly how grep works.

grep requires at least one search
expression as a command line argument.
The target file(s) for the search operation
are supplied as an additional argument.
Imagine you want to create a list of all

the users on your system whose name
starts with the letter “t” and who use
bash as their login shell. You can type

grep -i ^t.*bash /etc/passwd

to display them on screen.
If you do not supply a file name in the

grep command line, the tool simply

82 October 2002 www.linux-magazine.com

In short, regular expressions are
simply placeholders for specific
strings. Regexps, as the abbreviation

goes, are used for a variety of search
operations – for example, in most text
editors, as well as in your favorite Unix
scripting language.

Innumerable special functions and
exceptions make regular expressions a
slightly dry experience, or even a
daunting prospect. If you are still
struggling with the basics, I really would
like to wish you the best of luck – believe
me, it is worth the effort!

Encounters with Regexps
If you make regular use of the command
line, you will definitely use grep for
searching in files. This tool even derives

Regular ExpressionsLINUX USER

Command Description

-i Ignore case

-l Display on the files where the regular expression exists – do not display the the lines of text

-v Reverse search: Display only lines of text that do not contain the expression

-3 Display the line containing the expresssion and three lines before and after that line

-A 3 Display the line containing the expresssion and three lines after that line

-B 3 Display the line containing the expresssion and three lines before that line

TABLE 1: USEFUL GREP OPTIONS

You come across regular expressions at every step of the way on Unix systems.

But what exactly are they, and how do you use them? BY MARC ANDRÉ SELIG

Regular Expressions

Needles in a Haystack

searches standard input. This is quite
useful if you need to process another
program’s output. Imagine you wanted
to search for the Konqueror processes
belonging to the user mas; you could
type the following command:

ps -auwx | grep mas.*konqueror

The forwards / and ? reverse search
functions in the vi text editor can also be
regular expressions. However, this would
tend to cause confusion in emacs, where
incremental search operations are
involved. In this case you need to
explicitly search for a regexp.

The command for a standard
incremental search is M-C-s, that is [Ctrl-
Alt-S]. M-x [Alt-X], or search-
forward-regexp is slightly more straight-
forward: In this case you first enter the
complete search expression and then
perform the search.

Some people’s first experience with
regexps comes from perl, but most other
scripting languages (such as Tcl, Python
and PHP) can handle them. There are
some lesser known regexp consumers
such as the sed or awk languages, but
even the C++GUI toolkit, Qt, which you
can use to write KDE programs can han-
dle regular expressions.

Building Blocks
In the case of simple regular expressions,
you merely enter the string you want to
search for. You can type most ASCII
characters directly: Even a single
character can be a search string, albeit a
primitive one.

Our next lesson is: There are some
metacharacters that enable special
functions. The most commonly used
metacharacter is the period, which is a
wildcard for any other character. The
regexp be. . will search for be followed
by any two characters. This would allow
you to find both “bear” and “bean” and
even “bed” (followed by a space
character). However, what it would not
find is a lonely “bed” without the trailing
space character.

The ^ character searches for a new
line. This kind of character is referred to
as an anchor as it anchors the search
expression at the beginning of a new
line. You could therefore type ^bear to
search for the word “bear” at the

beginning of a new line. The dollar sign
$ does the same thing at the end of a
line. So if you want to search for the last
bean in a line you would need to type
bean$.

Since regular expressions are normally
evaluated line by line, additional
characters prepended to ^ or appended
to $ normally make little sense.
Languages like Perl sometimes allow
exceptions in this case – we will get back
to that subject later.

Regular expressions are really useful
when you use combinations! ^One$ will
match any lines that contain only the
word “One” and nothing else. You can
type ^$ to find empty lines where the
new line character is immediately
followed by the end of line character.

Warning: Constructs such as ^ and $
do not represent characters in the target
files but instead find spaces between two
characters.

grep ^a$ textfile

for example, will output exactly two
characters for each match, the letter “a”
and a new line, although the regular
expression comprises three characters.

Alternatives and Repetitions
Sometimes you do not know exactly
what you are looking for. If multiple
occurrences of a character (or an
expression to be more precise) are
permissible, you can use one of the
following operators: The asterisk *
indicates that multiple occurrences of a
character are permissible. a* thus
represents one or multiple “a”s – or even
an empty string that contains exactly
zero “a”s and thus complies with the
requirement “any number”. Mo*rs thus
matches “Moors” or “Mooooooooors”
but also “Mrs”.

In contrast to this, the plus character
+ repeats a character – it must occur at
least once, but can occur more often.
The regular expression jj+n will search
for two “j”s, one of which can be
repeated, followed by an “n”. Thus this
expression will match “jjn” or “jjjjjjjjjn”,
but not “jn”.

Most of the time repetition wildcards
such as + and * are not used in the
context of specific characters but to
repeat the period that represents any

other character. The regular expression
.* thus represents any number of occur-
rences of any character, i.e. it represents
any string. The regexp Jo.*nes can thus
represent any line that contains “Jo”
followed by “nes” anywhere in the line –
this matches “Jones”, “Johannes” but
also “Joe bought some fresh meaty
bones for his dog”.

.* will always search for a match that
is as long as possible. The expression
a.*b in the string “abcabcabc” thus
matches “abcabcab”. If you do not need
this, you can just add a question mark in
perl. .*? will search for a match that is as
short as possible, so a.*?b will simply
find “ab” in “abcabcabc”.

You can use a single question mark ?
to represent optional occurrences: The
preceding letter can occur exactly once
or not at. ab?c represents “ac” or “abc”.

The option of defining the number of
repetitions is more rarely used, and we
will be discussing it for the sake of
completeness only. If you need this
option, you use braces that contain the
minimum and maximum counts. a{1,7}
represents one through seven “a”s. a{,7}

83www.linux-magazine.com October 2002

LINUX USERRegular Expressions

Script language: A programming language
typically used for authoring (mainly smaller)
programs (scripts) that do not need to be
converted into an executable format by a
compiler, but are interpreted and executed by
an interpreter when the source file is called.
The most common examples are shells (such
as Bash) or Perl.

ed: The classic Unix line editor that does not
allow you to edit a whole file, in contrast to
modern text editors, but provides commands
that can be applied to a single line or
multiple lines.

Login shell: The shell that presents itself to a
user when he or she logs on via the command
line.The system administrator uses an entry
in the /etc/passwd file, which also includes
the user name, to specify what file this
should be. (Modern Linux systems normally
no longer store encrypted passwords in
/etc/passwd but shadow them in the
/etc/shadow file.)

GUI Toolkit: A program library that provides
functionality for authoring graphic user
interfaces (GUIs), for example, classes for
windows, scroll boxes, menu bars.The most
common GUI toolkits for Linux, Qt for C++
and GTK for C, also provide a range of classes
and functions for other purposes.

GLOSSARY

definition of the range is inverted, i.e.
the expression only match strings where
these characters do not occur. To search
for any characters with the exception of
“Z”, you can use [^Z]. If you want to
find any lines in a file that do not start
with “Y” or “Z” (and are not empty),
you would type ^[^YZ]. The circumflex
at the start of the regexp indicates a new
line which must be followed by any
character apart from Y or Z.

Predefined Ranges
Most libraries containing regular
expressions define short forms for
common ranges, and can save you some
typing. As you might have guessed from
the lack of enthusiasm in the last
sentence, you should not expect global
standardization …

You will find an overview of some of
the most important pre-defined ranges in
Table 2. The table includes the so-called
POSIX character classes, which most
engines accept – such as grep or perl.
You will also find the perl short forms,
which are somewhat cryptic to
understand but easier to type.

The big advantage of these pre-defined
ranges in comparison to homegrown
definitions such as [a-zA-Z] is that
pre-defined ranges normally allow you to
use a locale, i.e. if you work in a French
locale, accented characters count as
alphanumeric characters.

The second big advantage does not
really apply to Linux: Theoretically you
could have a character set that is
incompatible to ASCII, where the letters
of the alphabet are out of sequence or
not correctly sorted. In this case “[a-z]”
might not include all the lower case

letters (which it should), but instead
include some special characters (which
it should not). [[:lower:]] is guaranteed
to contain lower case letters only, no
matter what character set is in use.

Special Characters
You can use special characters (such as
umlauts, tabs, control characters, etc.)
for most implementations of regular
expressions. To do so, just enter them
directly as a regexp. If this is impractical
(because you cannot distinguish a tab
from a space in a program listing), you
can use the notation common to C and
most shells, for example \t for a tab. If
you need to search for a backslash, type
the character twice: \\.

Groups
Before we get down to practical cases, let
us look at another important construct.
Repetition characters such as * always
apply to the character, or to be more
precise, the expression that immediately
precedes them. Thus, abc* repeats only
the “c”; this regexp will match “abcc”,
but not “abcabc”.

However, you can use parentheses to
group a regexp. (abc) effectively means
the same as abc, but the internal
workings of the search operation are
entirely different: abc comprises three
search expressions, “a”, “b”, and “c”,
which must be found in sequence. (abc)

84 October 2002 www.linux-magazine.com

means at the most seven, and a{4,} at
least four “a”s.

You can use the pipe character | to use
alternative search expressions. Thus,

grep -E '(bus|train|plane)' U

vehicles.txt

will only show public transport vehicles.
The grep flag -E tells the search tool to
expect an “extended” regular expression.
Without this option the tool will
interpret this as a normal search string.

Character Ranges
A character range is an expression that
represents multiple characters, e.g. only
letters or accented characters. This is not
used very often for interactive tasks with
emacs or vi, but character ranges are
quite useful in scripting languages – for
example, you can define a range of valid
input characters when you are
programing CGIs.

Ranges are defined by square brackets
surrounding the valid characters. [abc]
includes “a”, “b” or “c”. You can
combine ranges like the one just
mentioned with other metacharacters:
[abc]+ thus matches “a”, “aa”,
“abababc”, etc.

Dashes (alias minus signs) facilitate
the definition of larger ranges. [a-z]
represents any lower case letter. [a-zA-
Z0-9] represents any alphanumeric
character. If the dash itself is to be
included in the range, you will need to
prepend the range with this character.
The range [-+a-z] comprises lower case
letters and the plus and minus signs.

If the first character within the square
brackets is a circumflex accent ^, the

Regular ExpressionsLINUX USER

CGIs: Scripts or compiled programs that are
stored on a web server, call a specific web
page when launched and generate a HTML
document“on the fly”(dynamically). CGI is
short for “Common Gateway Interface”.

POSIX: An attempt to standardize typical
Unix functionality and definitions (IEEE
Standard 1003.1). Most Linux programs can
be made POSIX compatible if required,
although this may mean doing without
some of the more advanced functionality.

Locale: POSIX supports automatic adapting
of programs to the local environment. One
obvious example would be displaying local
translations of system messages or man
pages.The locale also includes local formats
for pages, time or date values, measurements,
or preferred paper sizes, and of course
information the function fulfilled by specific
sections of the character set – that is,
whether character 196 should represent an
“Ä”or a non-printable character.

GLOSSARY

POSIX Short form Description
Character Class for range in perl
[[:digit:]] \d “Number”: a number between 0 and 9
[^[:digit:]] \D “not a number”: anything apart from digits
[[:alpha:]] “alpha”: letters (including local accented characters and similar)
[[:alnum:]] “alphanumeric”: letters and numbers
[[:word:]] \w “word”: alphanumeric character or underscore “_”(not in POSIX!)
[^[:word:]] \W “non word”: not alphanumeric or the underscore
[[:lower:]] lower case letters
[[:upper:]] upper case letters
[[:punct:]] punctuation marks
[[:space:]] \s “whitespace”: space character, tab or new line, POSIX includes the rare vertical tab
[^[:space:]] \S “non whitespace”: anything apart from space, tab or new line
[[:blank:]] “vertical whitespace”: space or tab

TABLE 2: PRE-DEFINED RANGES IN POSIX AND PERL

contains the group “abc” as an
individual search expression to which
other functions can be applied: (abc)*
repeats the whole group. This expression
will match both “abcabcabc” and “abc”
or even an empty string, but not “abcc”.

The Taming of the Shell
One important reason for the
“popularity” of regular expressions is the
fact that the incredible confusion that
using them can cause. Regular
expressions are so difficult to read when
they start to get more complex. To prove
a point, here is an example from the
perlfaq6 man page:

/*[^*]**+([^/*][^*]**+)*/|U
("(\\.|[^"\\])*"|'(\\.|[^'\\])U
'|\n+|.[^/"'\\])

This monstrosity is supposed to find
comments in C programs at the same
time ignoriing possible comment
characters in strings. No, I have not tried
it, and no, experts cannot really “read”
expressions like that, although they
might be able to piece together the
eventual outcome.

Various other complexities can make
your life miserable. Regular expressions
are used in thousands of different
programs, and of course each program
has its own implementation with
proprietary features and a small
smattering of exceptions. The first trap
you tend to fall into is backslashes,

particularly in combination with
parentheses to provide group
definitions. As we have seen, (abc)+
searches for repetitions of the “abc”
string, such as “abcabc” or “abcabcabc”.
Unfortunately you often have to enable
special characters like parentheses or the
plus by adding a slash. If you use perl,
the correct regexp would be (abc)+.
However, in grep you would need to type
\(abc\)\+. egrep or grep -E searches for
“extended regular expressions” and
understands (abc)+ as is.

The shell really likes backslashes – in
fact so much so that it eats them for
breakfast. Would you like a
demonstration? The command :-

echo \(abc\)\+

displays “(abc)+”. See what I mean, the
shell has “eaten up” the backslashes. So
you need to prevent backslashes from
disappearing into the depths of the shell
by adding another backslash. grep
\\\(abc\\\)\\+ works, but it might be
easier and more readable to add quotes
instead: grep ‘\(abc\)\+‘ has the same
effect and is clearer.

Differences in Libraries
I have already mentioned that different
programs will deal with regular
expressions in different ways. If you only
have to deal with a single tool when
authoring a perl script, for example, this
probably will not cause you too many

headaches. But if you switch tools, or
use multiple tools simultaneously, you
may find yourself facing a few issues.

The differences mainly concern two
points. Does the program expect a
“simple” or “extended” expression? This
boils down to the question of whether
you need to enable special functions,
such as + or parentheses, by prepending
a backslash \, or assume that the
functions are enabled by default (and
need to be disabled using a backslash).

Rule of thumb: Most script languages
use extended regular expressions, you
can thus directly use the functions
presented here. In addition to grep we
can also use egrep, which understands
extended regexps. Most editors and
command line instructions however
expect simple regular expressions.
Generally if something does not work
then try again but supplement back-
slashes at the strategic points.

The second issue is not such a big deal
in real life situations. Sophisticated
special functions are normally private
extensions that, of course, will not be
available in any other program. Perl, for
example, will allow you to place
comments in regular expressions and
offers special functions for virtual
expressions (predictive expressions that
check whether a certain string follows
the regexp without the text needing to be
part of the regexp) – this would make no
sense in grep.

Backlinks to Expression
As previously discussed, parentheses are
used to define groups of characters. So
far we have only used these groups to
repeat strings.

But the genuine task for these groups
is completely different: A group can
define a substring that you can refer to
later. When the program finds an
expression in parentheses, it will store

85www.linux-magazine.com October 2002

LINUX USERRegular Expressions

B by to P by to M
10:45 bus 11:52 train 13:05
10:49 train 11:19 train 12:05
11:45 bus 12:54 bus 15:10
12:45 bus 13:51 train 15:05
13:49 train 14:19 train 15:05

Listing 1: Sample file
connections.txt

Name Description

$& The last string found, i.e. what ever matched the regexp.

$` (backtick) Part of a string before the match.

$´ (Forward tick) Part of a string after the match. After a successful search the entire search string is split into
$´$&$´.

$+ The last matching group. If a regular expression comprises multiple group constructs, where some
are optional, you can use this to access the contents of the last group.

TABLE 3: PERL VARIABLES FOLLOWING A SUCCESSFUL SEARCH

Tailing the last slash Description

/i Non case-sensitive search.

/s The period also applies to new lines in the string where you are searching.

/m The string you are searching in can contain multiple lines (similar to grep), where ̂ and $ always rep
resent the start or end of a line in the string.

/g On searching and replacing, do not stop at the first match, but continue through the whole string.

TABLE 4: MODIFIERS FOR REGULAR EXPRESSIONS IN PERL

The following is a quick example from
a primitive Parser:

/^\s*From\s+(\w+)\s+Type\s+U
(\w+)\s+Seq\s+(\d+)\s+DB\s+U
(\w+)\s*$/i

or the "Invalid pattern in U

packet: \"$_\"";
my ($from, $type, $seq, $db) = U

($1, $2, $3, $4);

Now the variables $from, $type, $seq and
$db contain the matching strings. If you
type

From mas Type ACK Seq 4219 DB U

Pharma

thus $from = “mas”, $type = “ACK”,
$seq = 4219 and $db = “Pharma”.

Additional Perl Functions
Besides groups and the like, perl uses
additional variables after performing a
search. Table 3 provides an overview.

The perl regexp engine is without a
doubt one of the quickest available for
Unix. A few practical perl one-liners will
allow you to save some work on the
command line.

The following line allows perl to
function as a substitute for grep,
outputing any lines that include the
regular expression abc:

perl -ne 'print if /abc/' U

filename.txt

Perl can also be used as a substitute for
sed. In our example the regexp abc is
replaced by the def string and the results
are displayed on screen:

perl -pe 's/abc/def/g' U

filename.txt

The next command is similar, however,
here we are replacing abc inside the file
def and creating a backup copy in
filename.txt~:

perl -pi~ -e 's/abc/def/g' U

filename.txt

You will normally use m/regexp/ or
simply /regexp/ for simple search
operations in perl. To search and replace,
use s/regexp/replacetext/ instead. You

can also use one of the modifiers found
in Table 4 instead of the last slash.

Troubleshooting
Complex regular expressions rarely work
on your first attempt. Troubleshooting
regexps costs time and nerves – make
sure you have an ample supply of coffee
or cola!

The first step in the command line
should be to prepend the echo command.
Remember, the shell might devour some
of your characters. You can soon get to
the bottom of this issue by displaying the
command while it is executing. But even
in scripts you would be well advised to
display the regular expression, the
matches or at least part of these. You
should place commands that allow this
in your script. The perl debugger permits
interactive debugging of the regular
expressions.

If that does not help, simply split up
the expression into smaller sections.
Check whether all the parts really do
what you intended them to. And most
importantly – stay calm!.

Prospects
This short article should provide you
with an impression of the capabilities
and possibilites, but also the complexity
of regular expressions. If you want to
delve deeper into this field, there is only
one way to go: practise.

Reading or dissecting complex regexps
that you come across in scripts is both
instructive and frustrating. You might
prefer to keep using regular expressions.
The first time you need to perform two
similar searches in short succession, you
might find yourself wondering if a single
regexp would also have done the trick.

Also have a look at the grep und perlre
man pages and your perl documentation
man perltrap and man perlfaq6. ■

86 October 2002 www.linux-magazine.com

the expression, allowing you to call it in
a different part of the program.

Example: The regexp (bus|train)
matches both a bus and a train. Since the
expression is enclosed in parentheses,
the software records any matches –
“bus” or “train”. The string is stored in a
variable with a serial number between 1
and nine for the sake of simplicity.
Variable 1 comprises the contents of the
first group, variable 2 the content of the
second group, and so on.

You can use the \1 ff. construct and to
refer to these variables. Let’s use the file
connections.txt from Listing 1. This
contains a list of the connections from
Berlin via Paris to Madrid.

Now when I’m travelling, I try to avoid
walking from the bus station to the train
station. So I really just want to view the
connections that allow me to travel the
whole trip by bus or by train. I can use
the following syntax to do so:

egrep '(bus|train).*\1' U

connections.txt

The regexp first looks for “bus” or
“train” and saves the results in variable
1. Any string can follow this (“.*”)
provided the content of variable \1 also
occurs. So if “bus” occurs, the line must

also contain a second instance of the
word “bus”, in the case of “train” the
word “train” must occur twice.

The output is shown in the listing
above (Listing 2).

Backward References in Perl
Perl also handles backward references
perfectly. Within a regular expression
the content of the groups is stored in
the special numerical variables \1
through \9.

Additionally, perl stores regular perl
variables that you can use to access
matches outside of the regular
expression. The content of \1 is thus
placed in the perl variable $1, and the
content of \2 in $2, etc.

Regular ExpressionsLINUX USER

Marc André Selig
spends half of his
time working as a
scientific assistant at
the University of
Trier and as a
medical doctor in
the Schramberg hos-
pital. If he happens to find time for it,
his currenty preoccupation is
programing web based databases on
various Unix platforms.

T
H

E
 A

U
T

H
O

R

10:49 train 11:19 train 12:05
11:45 bus 12:54 bus 15:10
13:49 train 14:19 train 15:05

Listing 2: Output from
egrep command

