
The new frame can accomodate
additional widgets. Tabs can of course be
accessed via the mouse. The program
can also specify the foreground tab:

$notebook raise name

Tabs can also be queried, sorted or
deleted, but notebooks have limitations
if you need to add a larger number of
entries. Depending on the tab titles,
there may not be enough room to display
even four or five tabs simultaneously.
The widget will then display buttons that
allow you to click through the tabs
(Figure 2), although this will affect the
application’s handling.

You can solve this issue by using a
page manager with a menu or a toolbar

that allows the user to toggle the
available tabs.

Strict division of desktop areas, as
provided by notebooks, is not always
necessary. A title frame, a frame with a
title bar, as shown in Figure 1a is slightly
less obtrusive.

However, Tk 8.4 supports the more
powerful label frame, which is easier to
use and allows you to assert more
influence on its appearance. You can
even use widgets in the title.

Divide and Conquer
Horizontally or vertically tiled areas are
common GUI elements. The user can
then use a button (sash) to determine
the space assigned in each desktop area.
The widget to use in this case is the

60 October 2002 www.linux-magazine.com

The Tcl GUI toolkit Tk comprises a
complete selection of standard
widgets, such as frames, buttons

and listboxes. But some applications still
need more. Additional widgets, such
as tree or combobox are available
in various add-ons, such as BLT[1],
however, they tend to be precompiled,
and thus platform specific.

BWidgets do not have this dis-
advantage as they were written in
Tcl/Tk and can thus be distributed
with the application across platform
boundaries.

BWidgets are based on a development
by Unifix and are now available from
Sourceforge [2] under the BSD license.
After extracting the archive you need to
assign the add-on to the interpreter. To
do so, you use the library path variable,
“auto_path”:

lappend auto_path [file join U

//usr local lib BWidget-1.4.1]

The archive not only contains the add-on
itself but also the comprehensive
documentation, which you will find
in the “BWMan” subdirectory. The
interfaces are similar to those of the
normal Tk widgets, however, the widget
commands are capitalized.

Grouping and Organizing
Widgets
Some BWidgets are used for organizing
graphical desktops:
• Notebook (also referred to as a tab)
• Frame with frametext
• Vertically or horizontally tiled panes

with modifiable partitioning
• Scroll areas
The Notebook widget (see Figures 1a
and 1b, commonly referred to as a
tabbed widget) allows the user to toggle
between tabs. This in turn allows for
more intuitive use. You can use the
following syntax to add a tab:

set frame [$notebook insert U

end name -text "Example"]

BWidgets add common GUI elements such as tree and notebook to the

standard Tk widgets. In contrast to most alternatives they were programmed

entirely in Tcl/Tk and are thus well suited to platform independent

applications. BY CARSTEN ZERBST

BWidgets: New GUI Elements for Tcl/Tk

Sparkling Desktop

Tcl/Tk: BWidgetsPROGRAMMING

paned window. The “-side” option
allows you to specify the tiling direction
and the position of the sash. Just like the
“grid” command you use the “-weight”
option to specify the tiling proportions.
You can add an area to a paned window
by typing “set frame [$panedWindow
add]”, and then place your own widgets
in the new frame.

Automatic Scrollbars
When you move a paned window, at
least one area is normally too small to
accomodate all the widgets the window
contains. But there is an elegant solution
to this issue – that is, to use a scrolled
window (“$scrolledWindow setwidget
$child”) that automatically displays
scrollbars when required. However, only
a few widgets, such as “text” or
“canvas” will work with scrollbars.
The scrollable frame defines a
scrolling BWidget container, capable of
accomodating any widget.

The BWidgets package traditionally
duplicates some normal Tk widgets. We
will not be looking into these widgets, as
there is virtually no difference between
their functionality and that provided by
the native Tk widgets.

Needful Things
The additional input features not
available in normal Tk, Combobox and
Spinbox, are particularly interesting. A
spinbox will become available in Tk 8.4,
but this still leaves the combobox as an
important input widget (see Listing 2).
The widget allows the user to choose
from a list containing presets defined by
the “-values” option. The selection list
can be uniquely predefined or – as
shown in line 8 of our example – you can
use a callback to update the list before
displaying it.

If the user selects a new value, the
widget calls a further callback function.
The “.combo getvalue” function (line 12)
will return the selected item, allowing
you to access the element via “lindex”.
As line 25 of the sample program shows,
the selected element can also be
controlled via Tcl. In addition to the
numeric position “.combo setvalue
@Position”, “last”, “first”, “next” or
“previous” are also available. If the
“-editable true” flag has been set, the
user can also use the input field to type a

61www.linux-magazine.com October 2002

PROGRAMMINGTcl/Tk: BWidgets

Figure 1a: Users can toggle
between tabs in the notebook
widget

Figure 1b: The individual tabs
can accomodate widgets, even
paned windows

Figure 2: If there are too many
tabs, two arrow buttons allow
for scrolling

#!/usr/local/bin/wish8.3
Base Widgets from BWidgets

lappend auto_path [file join [pwd] BWidget-1.4.1]
package require BWidget 1.4.1

set notebook [NoteBook .nb]
pack $notebook -expand true -fill both

First notebook with TitleFrame
set frame [$notebook insert end tf -text "TitleFrame"]
TitleFrame $frame.title -text "Frame with title"
pack $frame.title -expand true -fill both

set f [$frame.title getframe]
label $f.label -text "an entry"
pack $f.label

Second notebook with PanedWindow,
ScrolledWindow and ScrolledFrame
set frame [$notebook insert end sp -text "PanedWindow"]
set panedWindow [PanedWindow $frame.pw -side top]
pack $frame.pw -expand true -fill both

set pane [$panedWindow add -weight 1]
set sw [ScrolledWindow $pane.sw]
set text [text $sw.text -wrap none -width 50 -heigh 50 -bg white]
$text insert 0.0 "right text in ScrolledWindow"
$sw setwidget $text
pack $sw -fill both -expand yes

set pane [$panedWindow add -weight 9]
set sw [ScrolledWindow $pane.sw]

pack $sw -fill both -expand yes
set sf [ScrollableFrame $sw.sf]
$sw setwidget $sf

set f [$sf getframe]
label $f.label -text "A label in a ScrollableFrame"
pack $f.label

foreach t {a b c d e f g} {
$notebook insert end $t -text "Tab $t"
}

$notebook raise [$notebook page 0]

wm title . "Order"
wm geometry . 200x200

Listing 1: Base Widgets

however, you might prefer to use George
Petasis’ “tkdnd” [3] add-on, which
supports native X11 and Windows drag &
drop and is capable of communicating
with Gnome or KDE applications.

Top of the Tree
Besides the structural elements, the tree
display is one the most important
features in BWidgets. Let’s look at a
simple file browser in Listing 3 as an
example (see also Figure 3). Line 10
creates the widget and specifies both the
colors and a callback function that is
called on opening and closing a node.
Trees can become extremely large, and
this is why line 7 again reverts to the
scrolled window. The first step is to

insert a node into the tree; this step is
performed using the command:

$tree insert index parent name

The index accepts the same values as the
“lindex” command, mainly “end”. The
parent field designates the node under
which the new node will be inserted –
this will be “root” for the first node. The
node name can be any string, however,
the name must be unique amongst the
tree widgets.

The node name is usually derived
from the data to be displayed, although a
serial number can be used. There are a
few options available for nodes in
addition to the text and image to be
displayed, particularly “-data value”,
which can store any additional data in
the node.

Current Content Only
The callback function “nodeOpen” (line
27) first deletes all the child nodes and
then recreates them when a node is
opened – thus ensuring that the file
browser will always display the current
content of the directory. If a user wants
to use the mouse to open a subtree, she
will need to click the small box next to
the node. The box is either drawn
automatically (as in the case of the first
node) or explicitly using the “-drawcross
always|never|auto” option.

Most applications will require the user
to select a node. You can use “$tree
bindText Event Callback” or “bindImage”
to bind a callback function to an event

62 October 2002 www.linux-magazine.com

value directly. However, the callback
function is not used in this case.

The drag & drop mechanism is a
special case. The current Tk version does
not contain a native implementation,

Tcl/Tk: BWidgetsPROGRAMMING

#!exec /usr/local/bin/wish8.3
Example of BWidget Combobox

lappend auto_path [file joinU
[pwd] BWidget-1.4.1]
package require BWidget 1.4.1

proc selectionUpdate {} {
.combo configure -valuesU

[glob -nocomplain *]
}

proc valueChange {} {
set index [.combo getvalue]
set selection [.combo cgetU

-values]
.value configure -textU

[lindex $selection $index]
}

ComboBox .combo -postcommandU
selectionUpdate \

-modifycmd valueChangeU
-editable false \

-entrybg white

label .value
grid .value .combo -sticky ewU
-padx 10

selectionUpdate
.combo setvalue @0
valueChange

wm title . "ComboBox"

Listing 2: Combobox

Figure 4: The Icon package by Adrian Davis not only contains a large number
of icons, but also a browser that you can use to view the icon pool

Figure 3: This file browser was implemented
using the BWidgets tree and shows the contents
of a directory when you open the directory

On September 5 Tcl/Tk finally went to version 8.4.The sources for the
beta version are available from [4], and pre-compiled packages for
Linux from Activestate [5].We will be looking at the new version’s
features in our next issue.

You can download the presentations from this year’s European Tcl/Tk
meeting, which was held in Munich, from Michael Haschek’s web site.
A variety of topics were discussed, ranging from e-learning to 3D
graphics.The latter also looked into a new Tcl add-on by General
Motors [7] that supports both tensors and the production of 3D
graphics. By the way,Tcl/Tk users in Munich are currently founding
their own user group.

The Bwdigets comprise a number of icons that can be queried using
the (undocumented) bitmap command. For improved ease of use
Adrian Davis has compiled a number of freeware icons – from KDE for
example – in his “icon”package [8]. He also provides a browser for this
purpose (see Figure 4).”

Breaking News

that occurs for the text or the node icon.
The callback function is responsible

for raising the selected element. The
“$tree selection subcommand” with the
subcommands “set”, “get”, “clear”,
“add” and “remove” takes care of this.
The “selected” procedure (line 56)
points the selection to a specific node

and displays the name and size of the file
by reference to the “::fileInfo” variable
(the variable is displayed in the status
line, see line 19).

Good Reasons
In addition to the features already
mentioned, BWidgets also contains a

progress indicator, as well as password,
font and color dialog boxes. Additionally,
you can use “DynamicHelp” to define
help texts for menus. “Dialog” can be
used as a template for dialog boxes of
your own.

Although some add-ons are already
obsolete there are several good reasons
for using BWidgets: It allows easy
programming of modern GUIs which you
would be hard put to achieve working
only with native Tk elements. ■

63www.linux-magazine.com October 2002

PROGRAMMINGTcl/Tk: BWidgets

Listing 3: Tree Widget

Carsten Zerbst works
for Atlantec on the
PDM ship building
system. He is also
interested in Tcl/Tk
usage and applica-
tions.TH

E A
UT

HO
R

[1] BLT: http://incrtcl.sourceforge.net/blt/
[2] BWidgets: http://tcllib.sourceforge.net
[3] Tkdnd: http://www.iit.demokritos.gr/~petasis/
[4] Tcl: http://www.tcl.tk/software/tcltk/8.4.html
[5] Active Tcl: http://aspn.activestate.com/ASPN/Downloads/ActiveTcl/
[6] Presentations: http://www.t-ide.com/tcl2002e.html
[7] TK3D: http://www.gm.com/automotive/innovations/rnd/TK3/TK3D_Software_Description.html
[8] Icon: http://www.satisoft.com/tcltk/icons/

INFO

#!/usr/local/bin/wish8.3
The BWidgets tree widget

lappend auto_path [file join [pwd] BWidget-1.4.1]
package require BWidget 1.4.1

set sw [ScrolledWindow .sw -relief sunkenU
-borderwidth 2]
grid $sw -sticky nesw

set tree [Tree $sw.tree -background white \
-selectbackground LightSkyBlue \
-opencmd nodeOpen \
-closecmd nodeClose

]
$sw setwidget $tree
$tree bindText <Button-1> selected
$tree bindImage <Button-1> selected

label .label -textvariable fileInfo -anchor w
grid .label -sticky ew

grid columnconfigure . 0 -weight 10
grid rowconfigure . 0 -weight 10
grid rowconfigure . 1 -weight 1
Callbacks
proc nodeOpen {node} {

Swap icon
$::tree itemconfigure $node -image [Bitmap::U

get openfold]
delete old child nodes
$::tree delete [$::tree nodes $node]

Directory of nodes
set path [$::tree itemcget $node -data]

Create nodes for all children

foreach child [glob -nocomplain [file joinU
$path *]] {

if {[file isfile $child]} {
set icon [Bitmap::get file]
set dc never

} else {
set icon [Bitmap::get folder]
set dc allways

}
$::tree insert end $node $child -dataU

$child \
-text [file tail $child] \

-image $icon -drawcross $dc
}

}

proc nodeClose {node} {
$::tree itemconfigure $node \

-image [Bitmap::get folder]
}

proc selected {node} {
$::tree selection set $node
set path [$::tree itemcget $node -data]
set ::fileInfo "[file tail $path], [fileU

size $path] bytes"
}

insert first node
$tree insert end root pwd -data [pwd] -text [pwd] \

-image [Bitmap::get folder]

... and open
$tree opentree pwd false

wm title . "FileBrowser"

