
you would want to rebuild those source
files to reflect the changes. A makefile
(by default called Makefile – the capital
M is important!) describes each com-
ponent of the project, how they should
be built, and what constitutes them
being ‘out of date’. The watchword here
is dependency.

If we have a two file project where
converter.c includes converter.h, then we
can say converter.c is dependent on
converter.h. If converter.h changes, it
stands to reasons that converter.c must
also have changed in some way, and so
needs to be re-built. We can build a make-
file to describe this. We can then build
this program by typing:

make

If you had not named your file ‘Makefile’
but listing1make, for example, then you
will need to use the -f flag.

make -f listing1make

Line 1 describes a target. The text to the
left of the colon dictates what we want to
produce (an executable file called
convunit in this case), whilst the right
hand side lists the dependant files we
have to use in order to build it. Our
makefile is effectively saying that should
converter.c or converter.h change, then
‘convunit’ will be out of date and needs
to be rebuilt.

Each subsequent line after a target
that begins with a tab (and only a
tab!) holds the command, or commands,
that we must execute in order to produce
the target file. It stands to reason, there-
fore, that those commands must produce
the target file in some manner. You can
include as many commands as you need;

62 November 2002 www.linux-magazine.com

In preparing this section, I asked
twelve different programmers for
the best way to write a make file. I

got twelve different answers! Writing
makefiles, like code, novels or music is a
uniquely individual experience. There is
no right or wrong way – whatever works
(and is readable!) can considered a
‘good makefile’! The method we’re using
here is fairly ‘traditional’ and shall be
developed from first principles, so you
can see each step in the process.

Make
So first off; what is a makefile? And what
is make? Well, make is a utility that
helps reduce development time by
allowing us to only rebuild parts of the
project (using gcc) that need it; if you
have not changed ‘converter.c’ or
included header files, why would you
want to spend time compiling it when
the result will be the same as it was last
week?! Conversely, if you’ve changed a
header file that is used in four places,

Following on from last month’s article, Steven Goodwin, looks at how the make utility can be used to improve the

development process. BY STEVEN GOODWIN

C: Part 12

Language of the ‘C’

C Tutorial: Part 12PROGRAMMING

1 convunit: converter.c U

converter.h
2 gcc converter.c -o U
convunit

Listing 1: Makefile

semi-colons let you put two or more
commands a line, while the backslash is
available for line continuation if
required. This is sometimes necessary,
since each line executes in its own shell,
and you might need to include several
commands. The following would fail
if each instruction was placed on a
different line.

main: source/converter.c U
cd source; gcc converter.c

make will execute each command in
sequence until none is found (i.e. the line
does not begin with a tab) or an error
occurs. At this point it will stop trying to
build that target and exit. To suppress
these errors, start each command with a
minus sign and it will continue with the
next instruction (we’ll see where that is
used later). Also, as each command is
echoed to the screen you may wish to
stop this by using the @ prefix.

convunit: converter.c U

converter.h
@echo "Now compiling U

converter.c ..."
gcc converter.c -o convunit

Temporary Like Achilles
This makefile can be improved however
by building object files, and not
executables. Object files are compiled
versions of source code (it can consist of
one or more ‘C’ files), which lack the
essential ingredients that make them
executable (like access to glibc, and a
place to start, for instance!). This not
only makes them smaller, but also does
not tie them in to any particular
executable.

They can be built individually, and
then linked together with other object
modules to make one executable. For

projects with several source files, this
also means that updates can be built
with just one compile and one link,
which is much more efficient than
several compiles, and one link. Object
files (by convention) use the .o exten-
sion, which is usually pronounced “dot
oh!”.

Here, we are nesting targets. In
this example, convunit is dependant on
converter.o (an object file), which in turn
is dependant on the two files converter.c
and converter.h.

Should any of these files change,
convunit will be re-built. We can place
the targets in any order we choose,
however, the first target given (convunit)
is the one built by default and so should
be the main executable.

Looking to the bigger picture, we have
already split our project into modules
(see last month’s Linux Magazine issue
24) and have five ready-made targets
(core, config, process, output and debug)
that map nicely onto five object files.
From this we can build a complete
makefile for the project.

These last two examples make uses of
the ‘-c’ option of GCC, which indicates
we want to only build an object file, and
not a complete executable.

Our first invocation of make will build
five object files (the .o files from lines
4,7,10,13 and 16) and one executable
(line 1); our second will build none! It
will spot that the file convunit is newer
than all its dependencies (converter.o

and config.o process.o output.o debug.o)
and report that it is “up to date”.
Whenever a file changes, only the
necessary dependencies will be rebuilt.
This is determined by looking at the date
stamp of the files in question. You can
test this by typing:

touch output.h
make

This will then build core.o and output.o
(since they are the only targets that
depend on output.h) and re-link a new
executable with the 3 old, and 2 new,
object files. It is very rare to include
header files like stdio.h and stdlib.h in
the dependencies list.

This is because they are standard
headers, and changing the function
prototypes or macros here would require
a change in the glibc libraries also. That
last happened many years ago with the
switch from version 5 to 6, and required
a complete recompile of all system and
user software.

Showroom Dummies
To ease the task of maintenance, make
supports macro substitutions which
you can use to save re-typing repe-
titive command line switches. This is -
especially useful for changing compiler
and linker options as one macro can
replace everything in one go.

Macros are, by convention, always
upper case and defined as a ‘name=

63www.linux-magazine.com November 2002

PROGRAMMINGC Tutorial: Part 12

1 convunit: converter.o
2 gcc converter.o -o U

convunit
3
4 converter.o: converter.c U

converter.h
5 gcc -c converter.c -o U

converter.o

Listing 2: Makefile

1 convunit: converter.o config.o process.o output.o debug.o
2 gcc converter.o config.o process.o output.o debug.o -o convunit
3
4 converter.o: converter.c converter.h config.h output.h process.h U

debug.h
5 gcc -c converter.c -o converter.o
6
7 config.o: config.c converter.h config.h process.h
8 gcc -c config.c -o config.o
9
10 process.o: process.c converter.h process.h
11 gcc -c process.c -o process.o
12
13 output.o: output.c converter.h output.h process.h
14 gcc -c output.c -o output.o
15
16 debug.o: debug.c converter.h debug.h process.h
17 gcc -c debug.c -o debug.o

Listing 3: Makefile

Notice that the equals sign is used
without spaces as it helps distinguish
between a macro definition and target
name. For other examples of CFLAGS,
see the BOXOUT: Useful compiler flags.

College Girls Are Easy
Another one of make‘s many features to
improve the quality of life are implied
dependencies. Make knows that a C file
generates a .o object file, and that it must
use gcc to do so; the dependency of
the .o on the .c is implied and so make
can perform the compile operation
automatically! This allows you to reduce
a typical line to:

config.o: config.c converter.h U

config.h process.h

On the surface, it might appear that we
have lost the means to use macros and
apply special compile flags to gcc. Not
so! By using the CFLAGS macro (which
is common) we can add warnings,
compiler optimisations, or any number
of switches we want, and they will get
used within the implied dependency.

Notice, however, that line 3 provides
an explicit build instruction because
make doesn’t understand that a col-
lection of .o files need to be built into an
executable. This is because it can not
make the connection between the
executable (convunit) and the object
files. By changing line 2 and calling our
ELF ‘converter’ instead, we can do
without line 3.

2 converter: converter.o U

config.o process.o output.o U

debug.o

The implied dependencies of an exe-
cutable (converter, in the case above) is
its equivalent .o file, and anything else
given on the right hand side of the colon.
That is – its usual dependencies.

For advanced work, it is possible to
create your own implied dependencies;
they are called suffix rules.

Time After Time
In addition to macros, there are a
number of special variables with a
similar appearance to macros, as both
start with a ‘$‘ symbol. When building
make files they can be used to enhance
error messages, or to provide parameters
to other programs. They also work inside
quoted strings.

converter.o: converter.c $$
converter.h

64 November 2002 www.linux-magazine.com

substitution’ pair. They are used with the
$(NAME) syntax and are substituted
automatically before executing any build
command. This way, any errors are
explained with real commands and
parameters, instead of macro names that
may be quite complex and obtuse.

CC = gcc
CFLAGS = -Wall

converter.o: converter.c U

converter.h
$(CC) $(CFLAGS) converter.c

A number of macros exist by default
(type “make -p” in a shell to find out
which) but these can still be changed if
necessary. There are also a number of
standard macros that you will see, so
you should become at least comfortable
with them (see tables 1 & 2).

Macros can also be set from the shell,
by giving the ‘name=substitution’ pair
as an argument to make.

make CFLAGS=-Wall

C Tutorial: Part 12PROGRAMMING

Macro Description Example
CC Name of the C compiler GCC
MAKE The make utility make
AS Assembler as
LD Linker ld
FC Name of the Fortran compiler (really!) f77

Table 1: Conventional Macros

Macro Description
TARGETS The names of the targets being

compiled
SOURCES Those files to be compiled
LIBS Directories for other libraries
INC Directories for other headers

files
CFLAGS Compiler flags
LFLAGS Linker flags

Table 2: Common Macros

$@ Name of the current target
$$@ As $@, but only available on

dependency line
$? Files that are newer than the

target, and so need building
$% ?Member files of library files?
$< $? for suffix rules
$* $@ for suffix rules.The files

suffix is omitted, however.

Table 3: Special Variables

.SILENT: Does not echo any command
executed. Equivalent to prefixing
each command with an @

.IGNORE: Ignore any errors from the
commands. Equivalent to - on
each command.

.PRECIOUS Does not remove the target file
being removed after an error.

.DEFAULT Tries to build this if the given
target doesn’t exist.

.PHONY Indicates that these targets do not
really compile into programs.
Used for cases like ‘clean’and
‘install’, in case there’s a file called
(say) ‘clean’in the current directory
that could confuse the situation.

Box 1: Targets

-D_DEBUG_FLAGS Automatically defines
the macro
‘_DEBUG_FLAGS’to the
source code.

-g Include GNU debugging
information into the
executable.This allows
you to use gdb to step
through the program
one line at a time.

-c Compile and assemble,
but don’t link. i.e. create
the object file

-o converter Specify the output file
-Wall Specifies the warning

level.‘All’ is best.
-O3 Specify the optimisation

level.0 is off (debug),3 is
the highest. Using -Os
will optimize for space,
instead of speed.

-fPIC Switch specific flag
options. Here, PIC tells
gcc to produce position
independent code (if
possible).The option
name is case insensitive.
Used to produce libraries
that would work in more
than one place.

-I /usr/local/apache2/include Also search the named
directory for header files.
Same the INC common
macro.

Note:There is no space between the flags switch and
the parameter, except with ‘I’.

Box 2: Useful compiler flags

@echo "Trying to build $@ U

(because $? are too new!)"
$(CC) $(CFLAGS) converter.c

For a list of these special variables,
please refer to table 3.

Shoot That Poison Arrow
When make is run without arguments
it will look for the first target in the
makefile and try to build it. If the
makefile contains more than one project,
you should create an extra target named
all, which is dependent on each of the
other targets. This way, every project will
get built with a single call to make. You
can also build a specific target by
including it as an argument.

make testbed
make config.o

Now, most Linux users who build from
sources are familiar with the trio of ./con-
figure, make, make install. If both the

above sentences are true, then ‘install’
must be the name of a target. Funnily
enough, it is! The ‘install’ target often
includes commands to copy configuration
and executable files to the appropriate
place. These targets, however, are phony
– they don’t really produce a file – and as
such need to be indicated by adding a
.PHONY line to the make file (see listing
3 and BOXOUT: Targets)

We can use this knowledge to enhance
our makefile by adding clean and install.
Notice that in the case of clean we ignore
all errors, and with install we suppress
the echo command; and will require
superuser privileges. In these cases no
dependencies are given, meaning the
instructions are executed every time that
particular target is called. This produces
a complete makefile, ready for use!

There’s a guy works down
the chip shop?
As time goes on, and projects change,
the makefile will become outdated. We’ll

need to add more targets, change
dependencies, or remove old files. Doing
this manually can become a bind,
so there are a number of tools to help
you, such as mkdepend, mkmkf and
makedepend. We shall look at this latter.

As the name suggests, makedepend
will build a list of dependencies for the
files specified on its command line. So,
assuming all our source files in the same
directory (and it contains no rogue files
from other projects), we can type:

makedepend *.c

And a complete list of dependencies
(including things like stdio.h, and
stdlib.h) will be built, stored in the
makefile. And in the correct format!

Makedepend does a couple of clever
things here. First off, it makes a back-up
of your original makefile and calls it
‘Makefile.bak’. Then it appends the
dependency information to Makefile.
What is clever here is that a second call
to makedepend will not re-append the
same data. Even in a small project such
as ours, makedepend can add 50 or more
lines to the makefile. How does it know?
Well, it adds a comment marked ‘DO
NOT DELETE’ before the appended text.
If this already exists, makedepend
removes the text below it, and adds the
new information.

Naturally, calling makedepend without
arguments will not find any
dependencies and thus produce an
empty block at the bottom of the file.
This is still useful, as it makes the
makefiles small enough to fit in a maga-
zine! And as long as we add the
dependencies back to the makefile
before trying to compile, all is well!

With the exception of .DEFAULT, each
can affect specific targets by including its
name as a dependency. If no target is
specified, then it will affect all targets
within the makefile. ■

65www.linux-magazine.com November 2002

PROGRAMMINGC Tutorial: Part 12

1 # We're now using implied dependencies!
2 convunit: converter.o config.o process.o output.o debug.o
3 gcc converter.o config.o process.o output.o debug.o -o convunit
4 converter.o: converter.c converter.h config.h output.h process.h U

debug.h
5 config.o: config.c converter.h config.h process.h
6 process.o: process.c converter.h process.h
7 output.o: output.c converter.h output.h process.h
8 debug.o: debug.c converter.h debug.h process.h

Listing 4: Makefile

01 CFLAGS -Wall
02
03 converter: converter.o config.o process.o output.o debug.o
04 converter.o: converter.c converter.h config.h output.h process.h U

debug.h
05 config.o: config.c converter.h config.h process.h
06 process.o: process.c converter.h process.h
07 output.o: output.c converter.h output.h process.h
08 debug.o: debug.c converter.h debug.h process.h
09
10 clean:
11 -rm *.o converter
12
13 install:
14 @echo "Copying conf file to /etc"
15 cp convert.conf /etc
16
17 .PHONY: clean install

Listing 5: Makefile

The language of ‘C’has been brought
to you today by Steven Goodwin and
the pages 62–65. Steven is a lead
programmer, currently finishing off a
game for the Nintendo GameCube
console.When not working, he can
often be found relaxing at London
LONIX meetings.

T
H

E
 A

U
T

H
O

R

