
and the corresponding subnet mask as
arguments when launching the tool. The
syntax for a single host is as follows:

scanssh 192.168.10.3/32

Figure 1 shows an example for a
complete subnet, where the output
contains the version number of the
installed servers.

Figure 2 shows scanssh investigating
individual hosts and shows that
OpenSSH and Ssh.com both use their
own software on their webservers.
Scanssh does not require root priveleges
– our only quibble is the fact that the
tool does not use host or domain names,
and can only locate SSH servers listening
on port 22.

How long does an RSA key
need to be?
There was a big scare with respect to the
security of SSH and other crypto-
programs in the middle of March this

year. Surprisingly
enough, it was not
caused by a soft-
ware vulnerability.
It is claimed that

1024 bit RSA keys can be broken within a
reasonable period and using affordable
resources. To be more precise, the target
was a PGP key, but the problem also
affects SSH. Dan Bernstein, the author of
the Qmail mail server, published his
research into highly specialized parallel
computers, designed for factoring inte-
gers, in the autumn of 2001 [3].
Afterwards, a discussion on the possible
requirement to withdraw 1024 bit PGP
keys ensued in the Bugtraq mailing list.
Crypto guru Bruce Schneier added a few
clarifying statements to settle this issue
([4],[5]). According to Bruce, the
following key lengths can be considered
as secure until the year 2005:
• Private persons: 1280 bit
• Corporate: 1536 bit
• Government: 2048 bit
Longer RSA keys are just a waste of time,
according to Schneier. If you want to
take Schneier’s advice, but have been
using a default 1024 bit RSA key for SSH
so far, you will need to update your key.
The following command creates a new
RSA key for Version 2 of the protocol:

ssh-keygen -b 1280 -t rsa U

-f ~/keynew/id_rsa U

52 November 2002 www.linux-magazine.com

The Secure Shell, SSH, – the name
promises safety, and has every
right to do so. We introduced you

to several secure services in the first part
of this series [1]. One of the most
interesting features is the facility to
provide secure tunneling for any TCP
protocol. We will be concentrating on
that aspect of SSH in this part of the
series.

First a word of warning to underline
our statement in the intro: The SSH
package is only secure if you use an up
to date software version – vulnerabilities
have been discovered time and again in
OpenSSH. The developers have always
resolved them in a timely fashion see
http://www.openssh.com/security.html,
but obsolete SSH servers are still a
security risk.

You can use the scanssh[2] tool to
search for obsolete SSH servers. The tool
will scan individual hosts or complete
subnets for SSH servers, and output the
version number. Just pass the IP address

The Secure Shell protocol is not only used to provide secure shells, but also to

forward other types of TCP connection through a safe tunnel. But you need

to get the key length and software version right, to ensure that SSH is really

safe – and there are quite a few pitfalls to watch out for when using SSH across

firewalls. BY ANDREW JONES

OpenSSH from the Administrator’s Perspective – Part II

Tunnel Vision

OpenSSH: Part IISYSADMIN

Figure 1: The scanssh tool searches for SSH servers, here in the
129.168.10.0/24 subnet, and outputs the exact version

Figure 2: Scanssh investigating the SSH versions installed by the OpenSSH
Project and SSH Communications Security on their own web servers

-C "1280 bit key for webmaster"

The RSA keypair (id_rsa and id_rsa.pub)
with a key length of 1280 bits is written
to the ~/keynew/ directory. You can use
the -f flag to specify a target directory, if
you want to avoid overwriting the
existing keys under ~/.ssh/. The -C
option adds a comment to the Public
Key, however, this is used only to
distinguish the key more easily, and has
no influence on functionality.

Tunneling: Forwarding TCP
Ports
In addition to its original task of allowing
secure remote logins, SSH can be used to
secure almost any other protocol. Port
forwarding allows you to relay TCP ports
through the secure SSH connection. In
this scenario SSH plays a similar role to a
proxy, receiving connections at one end
of the SSH channel and relaying them to
the servers at the opposite ends.

SSH can perform two port forwarding
variants: Local port forwarding and
remote port forwarding. Local port
forwarding is what you will need in most
typical circumstances.

In this case, a connection that reaches
a local (client-side) port, is forwarded
across the secure SSH channel to a port
on a remote server. You could also
describe this technique as an egress
tunnel. The syntax for this command is
quite simple:

ssh login@remote_host U

-L local_port:U
remote_host:remote_port

You can use forwarding to open up a
secure POP3 connection to your
mailbox, for example – in Part 1 of our
series on OpenSSH[1] we already
mentioned the potential vulnerability of
POP3. After all, the POP client transmits
the POP password to the server in the
clear, which makes it easy to steal the
password off the wire. To avoid this, you
can of course tunnel the POP3
connection through SSH, even if your
provider does not offer POP SSL:

ssh kh@pop.remote.com -C U

-L 25025:pop.remote.com:110

Now, if we are so bold as to telnet local-
host 25025, we can view the banner
issued by the remote POP3 server. It
works – and you don’t need to be root.
All you need to do now, is to set the POP
client to localhost and port 25025, to
allow it to poll mail as usual.

Figure 4 illustrates this procedure: The
SSH command opens a normal SSH
connection to the server, pop.remote.
com, and also opens the tunnel. This
forward will then remain active while
you are logged on.

If a POP3 client (or a telnet command)
now requests port 25025 on the client
(i.e. on localhost), the SSH client will

answer the connection request. SSH
opens port 110 server-side and forwards
any data.

You can also use a similar forward to
secure the connection to a Webmin
server (see the Boxout “Webmin
Configures SSH Server”):

ssh kh@admin.remote.com -C U

-L 33337:admin.remote.com:10000

Now the browser can talk to the Webmin
server via the tunnel on https://localhost:
33337/.

Lots of TCP based services can be
forwarded and tunneled in this way –
SMTP, IMAP, LDAP, or NNTP, but not
FTP. FTP uses both a control channel
and a data channel, whose ports are
negotiated within the control channel.
So, although it is trivial to secure the
control channel, the data channel will
still be in the clear. SSH provides scp and
sftp as replacements.

Forwarding for Arbitrary
Hosts
The kind of forwarding we have looked
at so far relied on the hosts at both ends
of the SSH connection having the
application client and server software
installed. But all of the programs
involved, the application client, the SSH
client, the SSH server and the application
server could equally run on a host of its
own. So forwarding can involve up to
four hosts for a single instance.

This kind of off host forwarding can
be used to create unusual network
connections, and SSH tunnels, however,
keep security in mind, when you are
planning practical implementations. For
one thing, only the connection between
the SSH client and the SSH server is
secured, and an attacker with access to
the local port, but not to the target port
on the server, can always use the tunnel
to access a service that would normally
be inaccessible.

To mitigate this danger, OpenSSH by
default only allows connections from the
local host to the forwarded port,
although you can use the -g switch to
change the default behavior. A sensible,
practical application for off host forward-
ing would be a connection to a server
where the user does not have an SSH
account. In this case the user will need

53www.linux-magazine.com November 2002

SYSADMINOpenSSH: Part II

Figure 3: The Web-based administration program, Webmin, provides a module for configuring SSH
server. However, you will need to put some thought into this (see boxout)

scenario from the viewpoint of the TCP
client application. If the TCP client
application is local to the SSH client
machine, local forwarding is the right
option. If it is running on the remote SSH
server machine, you should opt for
remote port forwarding.

Not Always All Ports
OpenSSH permits TCP forwarding by
default, and allows any free local and
remote ports above 1024. Root is
additionally permitted to forward local
privileged ports below 1024.

A user with a genuine SSH login can
also achieve the same goal without any
support from SSH, using Netcat, (nc), for
example. To do so, the user would need
to connect a Netcat server and a Netcat
client via an SSH shell pipe. The
AllowTcpForwarding no directive in the
server configuration file, sshd_config, is
thus only partially effective.

Through the Firewall
One of the more interesting tasks for TCP
forwarding involves transparently tun-
neling protocols through a firewall which
permits SSH. A homeworker might need
access to data stored on an Intranet web
server, for example, although the server
is only accessible on the company’s
internal LAN. A firewall prevents access
from outside, but permits SSH logins on
the gateway. Let us assume that the
following computers are involved:
• Home desktop hd
• Office desktop od
• Gateway gw
• Internal web server ws
The user runs the following command
on his home desktop:

ssh gw_login@gw -L 2001:ws:80

This opens an SSH session to gw, and at
the same time forwards the local port
2001 to TCP port 80 (HTTP) on the
internal web server ws via the SSH
channel. This assumes that port 2001 on
the local machine has not already been
assigned to another service. Now the
LAN web server can be accessed from
the home desktop using the following
URL: http://localhost:2001.

This variant is risky. Any user logged
on to hd can use the open port, provided
the tunneled session to gw is active. If
the user also used the -g flag, port 2001
on hd will also be accessible to other
hosts. If you cannot trust your users, you
should be careful here, otherwise you
might find them poking holes in your
firewall. But it would be wrong to blame
SSH for this: Any connection that goes
through your firewall can be misused to
tunnel other protocols.

SSH on SSH
Keeping to our home office example,
let’s assume that an employee would like
to be able to log on to her office desktop

54 November 2002 www.linux-magazine.com

an SSH server with a secure connection
to the POP3 server in the vicinity of the
target server. This might be the case if
both servers are in the demilitarized
zone behind a firewall, but the user
requires remote access to the network:

ssh kh@ssh.remote.com -C U

-L 25025:pop.remote.com:110

The forward is illustrated in Figure 5: An
SSH tunnel is established between the
client and ssh.remote.com. The mail
client connects to its local port 25025.
This connection is accepted by the SSH
client, and the SSH server then provides
the counterpart on port 110 between
ssh.remote.com and pop.remote.com.
Only the connection between the client
and the SSH server is encrypted; a
standard TCP connection is established
between the SSH server and the POP3
server. From the viewpoint of the POP3
server, the connection originates from
ssh.remote.com and not the client.

Reverse Forwarding
Remote port forwarding is the exact
opposite of local port forwarding: The
connection request is for a port on the
host running the SSH server. Data is
forwarded via the SSH channel to the
client, where it is sent to an arbitrary port.
You could also regard this as an ingress
tunnel. The syntax is as follows:

ssh login@remote U

-R remote_port:U
local_host:local_port

To determine what kind of port forward
you need, you need to look at the

OpenSSH: Part IISYSADMIN

Figure 4: Local forwarding means that SSH will forward a connection that enters the client on port
25025 through the tunnel to the server, where it reaches its target, port 110

pop.remote.com

Mail Client POP3 Server

Port 25025 Port 110

ssh -C -L 25025:pop.remote.com:110 \
kh@pop.remote.com

SSH Tunnel

Client

01 # SSH-Port
02 export SSH="22"
03 [...]
04 # Drop-Policy
05 $IPTABLES -P INPUT DROP
06 $IPTABLES -P OUTPUT DROP
07 $IPTABLES -P FORWARD DROP
08 [...]
09 # Rules for SSH access to the
gateway
10 $IPTABLES -N ssh_gate
11 $IPTABLES -A INPUT -p tcp -m
state --state NEW -d $EXT_IP --
dport $SSH -j ssh_gate
12 # Gate should permit outgoing
and ingoing SSH (to the LAN)
13 $IPTABLES -A OUTPUT -p tcp -m
state --state NEW --dport $SSH -j
ssh_gate
14 $IPTABLES -A ssh_gate -j
ACCEPT
15 [...]
16 $IPTABLES -A INPUT -m state --
state ESTABLISHED,RELATED -j
ACCEPT

Listing 1: Allowing SSH to
the Firewall

using her home office desktop. An SSH
connection in an SSH tunnel provides an
elegant and secure solution:

ssh gw_login@gw -L 2002:od:22
ssh od_login@localhost -p 2002

The first command opens up a tunnel
from the local port 2002 to the gateway
gw, which forwards this connection to
the SSH port, 22, on od. The second
command uses this tunnel to connect to
port 2002 on localhost (option -p), thus
creating an SSH on SSH connection.

Alternatively, the homeworker could
log on to gw and move on to od from
there. This solution would mean the user
storing her SSH key on the gateway,
enabling a forwarding agent, or using a
normal password. The SSH on SSH
method avoids this. The gateway has no
access to the data being forwarded: hd is
directly connected to od via the tunnel,
and this means that user will be working
with her account on od.

From the viewpoint of the tunneled
connection it does not matter whether
NAT (Network Address Translation) is
involved, even multiple NAT will not
cause any problems.

A Backdoor to Your Own
Network
Let’s look at another example that seems
to be more complex at first: The user
does not have a login on the gateway,
and the firewall prevents her from con-
necting to the internal network. In this
case remote port forwarding can provide
a backdoor to the corporate network.
The home desktop will need access to
the Internet, and must be able to accept
external SSH logins. The user must know

the external IP address of her home
desktop, but this should not be too
difficult to determine, even for a
dynamic IP address, in the light of
services such as DynDNS. The user then
enters the following command on her
office desktop:

ssh hd_login@hd -R 2003:od:22

Instead of terminating this login, the
user then leaves the tunnel open (see
Figure 6). When home, she can use the
tunnel to log on to her office desktop:

ssh od_login@localhost -p 2003

If the corporate gateway does not permit
outgoing SSH connections for some
reason, the user can simply have her
SSH server on hd listen to a permitted
port; port 80 looks promising in this
case. This just goes to show how easy
it is for users to poke holes in your
firewall, if they really want to, of course.
As soon as you open any port, users

can tunnel through it. Of course, this
normally means contravening corporate
regulations, so if you want to keep your
job, you should be very careful about
tunneling, and seek prior authorization
from your admin.

In the context of port forwarding the
options -N and -f can be quite useful: -N
prevents SSH from running commands
server-side, and allows only the specified
ports to be forwarded. -f sends the
SSH client into the background, after
authentication has been completed, i.e.
after the user has entered her password
or passphrase.

Special Cases: X11
X11 forwarding involves a special kind of
SSH port forwarding. X11 always uses a
network protocol. Even if the graphic
output of a program running on the local
machine is displayed on a local monitor,
data have to be transferred between the
client and the server.

The X11 server is responsible for the
screen display in this case, and it also

55www.linux-magazine.com November 2002

SYSADMINOpenSSH: Part II

Figure 5: SSH can also
relay TCP connections
to a server running on a
machine without the
SSH daemon. The
connection between
ssh.remote.com and
pop.remote.com is not
secure in this case.

ssh.remote.com pop.remote.com

Mail Client

Port 25025 Port 110

POP3 Server

ssh -C -L 25025:pop.remote.com:110 \
kh@ssh.remote.com

SSH Tunnel

Client

The first article on OpenSSH [1] discussed the configuration of sshd amongst other things. If you
prefer GUI based admin tools, you can use the corresponding Webmin module [6].Webmin writes
modified settings directly to the server configuration file /etc/ssh/sshd_config. Figure 3 shows you
what Webmin’s SSH module looks like.

If you intend to use Webmin, you should be aware that this tool consists of a large number of Perl
CGI scripts, that are accessible on port 10000 (TCP und UDP) of the Webmin server.To achieve a
modicum of security, you will need to enable SSL encryption in your Webmin configuration, this
will ensure that your login, password, and the changes you make in Webmin are not transmitted
in the clear.

Also be aware that the Webmin distribution uses a 512 bit RSA key and a self-signed certificate for
SSL. Of course, the certificate is not assigned to your own server. But the fact that anybody
downloading the package will be aware of the purportedly secret key is probably worse. In other
words, it does not really matter that the key length is insufficient.You would need your own SSL
key and your own server certificate, or an SSH tunnel, to provide genuine security.

Configuring SSH Servers via Webmin

~/.bashrc can prove to be another
pitfall. Some of these scripts attempt to
set the $DISPLAY variable, without being
aware of SSH. They may even overwrite
the correct settings and this could cause
some surprises if the X11 client talks
directly to the X11 server, and simply
ignores the tunnel, although SSH and
X11 forwarding have been enabled.

After fulfilling the conditions for
X11 forwarding, you can run any X11
program on the remote computer. The
SSH tunnel forwards the display to the
local display and encrypts the data
transmission. When dealing with SuSE
servers with Yast 2, or Mandrake hosts
with DrakConf, admins can use this
method for secure remote administration
via an SSH tunnel.

Configuring a Firewall
for SSH
We have already mentioned how a user
can undermine a firewall using a tunnel.
But no security conscious admin would
want to attach her computer to the
Internet without a firewall. The firewall
is often the Internet gateway for an
internal LAN configured with private IP
numbers (RFC 1918).

Our task is to configure the firewall to
allow an SSH login on the firewall host,
and to provide access to the servers in a
DMZ or on the LAN from that point.
Listing 1 shows how you can use the
firewall subsystem of the Linux 2.4
kernel to do so; it illustrates only the
relevant sections of the iptables rules.

This set of rules uses a DROP policy for
INPUT, OUTPUT and FORWARD. By
default, the kernel will not permit any IP

packages to enter or leave the computer,
and will not forward any IPs. Interfaces,
IPs and Ports must be specified explicitly
– i.e. the basic principle, “anything not
explicitly permitted is denied”, applies.
This policy will not even allow con-
nections to a host loopback device
without explicit permission.

An INPUT rule allows SSH connections
to the gateway via the external interface.
An OUTPUT rule allows SSH logins via
the Gateway to computers on the LAN or
in the DMZ. These rules do not permit
you to log on directly to any internal
computer. The last line in Listing 1
allows the kernel to recognize the
packets belonging to a permitted con-
nection and also permit them. This kind
of statefulness became available with the
network stack of the 2.4 kernel.

For more detailed information you
might like to refer to the commented
iptables scripts produced by Bob Sully
[7], or to man iptables, and the iptables
HOWTOs [8]. ■

56 November 2002 www.linux-magazine.com

reads keyboard and mouse input. X11
clients are programs that use X11 for
their input and output. X11 servers
normally listen on port 6000. If a
computer has more than one screen,
keyboard, and mouse, additional X11
servers will use ports 6001 upward. The
client program reads the environment
variable $DISPLAY to discover what
server it should display on.

If you can access an X11 server, you
can display an X11 client on that server,
however, you can also grab screenshots
or sniff keyboard events. So without
additional security measures X11 would
be a security nightmare.

But rest assured, X11 uses an
authentication system of its own. MIT
Magic Cookies are the most common
implementation in this area. Since you
need authentication, a port forward
alone is not sufficient for X11. So SSH
provides a mechanism that allows you to
relay the graphic output of a remote
computer to your local display. This
mechanism handles X11 authentication,
sets the $DISPLAY variable when you log
on, and forwards the connection through
the tunnel.

Several conditions must be met. The
configuration file for the remote SSH
server, sshd_config, must contain the
lines X11Forwarding yes and a directive
of the type X11DisplayOffset 10.

On the SSH client side, you will need
to run an X11 server and enable X11
forwarding, for example, by using the
SSH option -X or ForwardX11 yes in
/etc/ssh/ssh_config or ~/.ssh/config.

The profile files on the remote
computer, for example, ~/.profile or

OpenSSH: Part IISYSADMIN

Figure 6: SSH tunnel: od first connects to hd and then opens a tunnel via reverse port forwarding, allowing
hd to open a second SSH connection in the opposite direction to od

od
hd

Firewall
SSH Server SSH Client

Port 22 Port 2003

ssh hd_login@hd -R 2003:od:22

SSH Tunnel

Client

[1] “Out of Sight: OpenSSH from the
Administrator’s Perspective”, Linux
Magazine Issue 24

[2] Scanssh: http://www.monkey.org/
~provos/scanssh/

[3] Daniel J. Bernstein:“Circuits for Integer
Factorization: A Proposal”:
http://cr.yp.to/papers/nfscircuit.ps

[4] http://www.counterpane.com/
crypto-gram-0204.html#3

[5] http://www.counterpane.com/
crypto-gram-0203.html#6

[6] Webmin SSH module:
http://www.webmin.com/download/
modules/sshd.wbm

[7] IPtables scripts by Bob Sully:
http://www.malibyte.net/iptables/
scripts/fwscripts.html

[8] HOWTOs for IPtables:
http://www.digitaltoad.net/docs/
iptables-HOWTO-1.html

INFO

Andrew Jones is a contractor to the
Linux Information Systems AG
http://www.linux-ag.com in Berlin.
He has been using Open Source
Software for many years.
Andrew spends most of his scarce
leisure resources looking into Linux
and related Open Source projects.

T
H

E
 A

U
T

H
O

R

