
WLAN, but looks like an additional
network – a virtual one – from the
client’s point of view. Figure 1
demonstrates this principle using the
OpenVPN[1] VPN package. The laptop
and the desktop are connected via a
WLAN and can reach each other’s true
IP addresses on the wireless LAN.

The VPN assigns an additional IP
address to both the laptop and the
desktop. The VPN encapsulates any data
sent to the virtual addresses and trans-

mits it to the real address of the host at
the other end of the connection. The
host on the receiving end will then
decapsulate this traffic and treat it as
though it had arrived via its virtual IP,
thus creating a tunnel between the
laptop and the desktop.

Additional firewall rules allow both
computers to receive any data arriving
through the tunnel. So, any packages an
attacker inserts into the WLAN have no
chance of getting through.

28 November 2002 www.linux-magazine.com

Wireless LANs allow attackers
to war drive their victims’
premises and grab all the data

packages travelling across the network
with a little help from the WLAN cards
installed in their lap tops. You can
compare this with a victim installing a
network socket at the nearest bus stop
and hoping nobody will bother plugging
in to it.

In urban areas the risk is extremely
high even for private users. Wardrivers
constantly search for WLANs that allow
them to gatecrash internet accounts,
snarf data or hack into large enterprise
file servers possibly causing denial of
service conditions.

Whereas an attacker would need
access to a network socket or the wire
to hack a wired LAN, a WLAN pays
little attention to walls and fences. To
provide a modicum of protection even
the earliest wireless LANs used the
“Wireless Equivalent Privacy” approach.

WEP aims to provide a level of
security equivalent to that available
in wired environments and uses its
own encryption algorithms to do so.
Key lengths or 40 bits were originally
envisaged, but today’s devices use 128
bits. Unfortunately, the algorithm used
here is quite weak: 40 bit keys can be
cracked in a matter of minutes, and even
128 bit keys will tumble within a few
days. In other words WEP provides very
little protection.

Encryption
A Virtual Private Network (VPN) that
receives the traffic, encrypts it, transmits
it across the wireless LAN, and decrypts
it on the other side is normally the best
solution. A VPN uses the traditional

Wireless networks may be practical but they are also quite dangerous. Integrated WEP encryption is no real problem for

attackers who can snarf and manipulate data or even inject packets. An encrypted tunnel that uses OpenVPN to protect

your data provides a secure solution. BY ACHIM LEITNER, DANIEL COOPER, OLIVER KLUGE

Secure WLAN Networks via Encrypted OpenVPN Tunnels

Secure Tunnels

OpenVPNCOVER STORY

The VPN uses cyptographic tech-
niques to protect the tunnel. In
contrast to the insecure WEP technology,
tried and tested algorithms are used to
provide a high level of security here. The
tunnel thus protects any data sent
through it from uninvited guests, at the
same time ensuring that nobody can
spoof a legitimate laptop and transmit
data through the tunnel – the tunnel
walls are solid.

OpenVPN
The VPN principle has been implemented
in various protocols, products, and
projects. OpenVPN is a stable and simple
implementation that does without mani-
pulating the kernel or the IP stack.

At both ends of the tunnel it collects
traffic destined for the other end,
encrypts this data using a locally stored
key, and transmits the packages secured
in this way through to the other end of
the tunnel.

The receiving end decapsulates the
transmission and checks its origin. Only
data secured with the correct key (i.e.
the secret common to both ends) will be
decapsulated and forwarded – any other
data is rejected. This allows you to
tunnel data packed in secure containers
through a maze of insecurity.

The following example assumes that
the wireless network is attached to
wlan0. The desktop is also equipped
with a traditional, wired network
interface card, referred to as eth0. This
network provides access to other
computers in the local network and to
the Internet.

First Steps
If you have not already installed it, you

will need to install the OpenVPN
package first (see the “Installation” box).
The simple procedure described below
assumes a static IP address – so your
computers will need fixed addresses that
do not change after every reboot.

The procedure is more complex if you
use a DHCP server to assign dynamic
addresses. OpenVPN does not modify
the kernel, instead using the TUN/TAP
driver [2] to ensure the forwarding of
data packages.

This step is quite simple as the
required kernel module has been part
of the major distributions kernel trees
for some while now. The next step is to
load the module. Ensure that you have

superuser (root) privileges and type the
following command:

modprobe tun

In order to provide secure functionality
OpenVPN will need keys. The simplest
case assumes that both computers will
be working with a shared secret. The
command is then

openvpn --genkey -secret U

secret.key

will create a key and store it in the
secret.key file. Only the two computers
involved should know this key, which
should be readable for root only –
anyone who knows the key can easily
crack the tunnel.

The key also needs to be copied to the
second computer – make sure that this
step is secure. Somebody might already
be listening in on your wireless network,
so why not use a floppy, which you
would then reformat. If you have already
installed a program such as OpenSSH,
PGP, GnuPG, or similar, you can also use
this program.

Digging the Tunnel
Now let’s get that tunnel up and
running. For this step OpenVPN will
need the (static) IP address of the target
computer, the name of the tunnel device
(tun0 by default), and both virtual IP
addresses for the VPN.

29www.linux-magazine.com November 2002

COVER STORYOpenVPN

Figure 1: The Virtual Private Network is tunneled along a path that starts and ends at the real IP
addresses of the laptop and desktop computers

Notebook

Virtual Address Virtual Address

Virtual Private
Network

 Real Address Real Address

Desktop

WLANWLAN

To install OpenVPN you will probably want
to download the source package, openvpn-
1.3.1.tar.gz, from [1], and then unzip and
install it (you need root priveleges).

tar -xvzf openvpn-1.3.1.tar.gz
cd openvpn-1.3.1
../configure --disable-lzo
make
make install
Note that we used the --disable-lzo flag with
configure in order to disable compression.
However, you can optionally install the LZO
library[3].You will definitely need the
OpenSSL library and developer files. SuSE
users require two separate packages, for
example: openssl and openssl-devel.

Installation is easier for Debian users – just
type the following to install OpenVPN:

apt-get install openvpn
The OpenVPN developers also provide RPM
packages for Red Hat 7.2 and 7.3.

Installation

The tunnel device is available in the current
kernel, and from [2] for older versions. If you
want to compile the current kernel yourself,
you will find the TUN module under
“Universal TUN/TAP device driver support”
in the “Network device support”section of
make xconfig.

You can compile and install this module
individually at any time without needing to
replace the entire kernel. After configuring
the kernel simply type:

make modules
make modules_install
You will now need to create the device file,
/dev/net/tun. If the /dev/net/ does not exist,
type mkdir /dev/net/ before creating the
device:

mknod /dev/net/tun c 10 200

TUN Device

And for the desktop:

openvpn --dev tun0 U

--remote 172.16.0.1 U

--ifconfig 10.0.0.2 10.0.0.1 U

--secret secret.key

You can then use ping to test the
connection. On the laptop ping 10.0.0.2
should do the job, and demonstrate that
the virtual IP address of the desktop is
then reachable.

If everything turned out ok, you can
now launch the OpenVPN daemon,
allowing OpenVPN to run in the
background and use Syslog for logging.
Use the --daemon flag when you launch
OpenVPN to do so, but make sure that
you supply the absolute pathname for
the file containing the secret key.

On the Right Track
The tunnel is up and running, and traffic
is travelling happily back and forth – but
your laptop and desktop still need to
know what types of packages you want
to allow through the tunnel. If you use
the virtual IP address of the other end of
the tunnel for the commands involved,
this should be no problem. The
OpenVPN call will define the route to

use exactly this address. Any other
addresses will be routed past the tunnel,
just like they were previously.

The route from the desktop to the
laptop will work perfectly, provided
you use the new virtual address when
you want to talk to the laptop. The
real addresses assigned to the WLAN
adapters in the laptop and the desktop
only serve one useful purpose now: they
are the endpoints of the tunnel.
However, they will no longer be accessed
by normal connections.

You will need to put a few finishing
touches to the route from the laptop to
the desktop and thence to the other
computers on your local network and the
Internet, as the default route needs to be
redefined. The following command
allows the laptop to direct all of its traffic
through the tunnel:

route del default
route add default gw 10.0.0.2

Of course, the default route does not
apply to packets destined for the real
WLAN IP address of the desktop
(172.16.0.2). And this is a good thing, as
the tunnel is bound to this address. So
now the desktop just needs to know that
it may need to forward some of the
packets that it decapsulates. Use the
following command:

echo "1" > /proc/sys/net/ipv4/ U

ip_forward

Fireproof
That nearly completes the job at both
ends. Both the laptop and the desktop
are using the tunnel, your traffic is

30 November 2002 www.linux-magazine.com

And don’t forget the file with the key,
of course. The commands on the laptop
are as follows:

openvpn --dev tun0 U

--remote [Real_DesktopIP] U

--ifconfig [Virtual_LaptopIP] U

[Virtual_DesktopIP] U

--secret secret.key

You need to be superuser (root) to run
this and any following commands. The
commands for the desktop are as follows
(the IP addresses just need to be
rearranged, of course):

openvpn --dev tun0 U

--remote [Real_LaptopIP] U

--ifconfig [Virtual_DesktopIP] U

[Virtual_LaptopIP] U

--secret secret.key

You can use more or less any IPs for the
virtual addresses, however, they will
need to be private addresses. Your
virtual addresses should be in a different
block from your real addresses to allow
simpler routing – the real network
should be easy to distinguish from the
virtual network.

Address Assignments
As a practical example, let’s assume that
the real IP address 172.16.0.1 has been
assigned WLAN adapter in the laptop,
and that the desktop answers to
172.16.0.2. The VPN will need to use
addresses in the private address space,
for example 10.0.0.1, as the virtual IP
address for the laptop, and 10.0.0.2 for
the desktop. In this case, the command
for the laptop is as follows:

openvpn --dev tun0 U

--remote 172.16.0.2 U

--ifconfig 10.0.0.1 10.0.0.2 U

--secret secret.key

OpenVPNCOVER STORY

Private address: Normal, public IP address are globally unique, and need to be so, for packages to
find their way to a target. In contrast, private IP addresses are valid only on local networks and are
not routed on the public Internet.This allows multiple networks to use the same private addresses.
Various IP address blocks have been reserved for this purpose: 10.x.x.x and 192.168.z.z, and 172.16.y.y
through 172.31.y.y.
Routing: Path selection for IP packets. Linux uses a routing table to select an interface that will
permit a packet to get closer to its final target. Stand alone computers do not have many options:
127.0.0.1 uses the loopback device, lo, and everything is transmitted via the default route, eth0, or
similar. Routers with multiple network adapters need to make more complex decisions.

GLOSSARY

Figure 2: Firewall rules can prevent outsiders entering your WLAN. Only the OpenVPN tunnel is allowed
to transmit on the WLAn interface

Notebook Desktop

public IP address

UDP port 5000 UDP port 5000

tun0tun0

wlan0wlan0

secure and nobody can listen in.
However, it is still possible to inject
packets, and this would allow an
attacker to hijack your desktop’s Internet
connection.

Even if you have a flat rate, you will
probably want to avoid giving band-
width away. Network services provided
by clients and servers (such as Web, SSH
or FTP servers), are vulnerable from
within the WLAN. And if you run an
internal network there is another danger
to consider: Any packages injected into
your WLAN will sidestep a firewall posi-
tioned between the Internet and your
internal network. However, you can
modify your firewall configuration [4] to
remedy this situation.

The OpenVPN distribution also con-
tains a sample script for your firewall.
However, you will need to add a few
additional rules for your WLAN tunnel
combination. Figure 2 shows where you
should apply these rules.

OpenVPN uses UDP to transmit
encrypted packets to port 5000 at the
other end of the tunnel, and uses the
WLAN to do so. This means you will
need to allow UDP port 500 on your
wlan0 interface. The following command
allows you to receive data:

iptables -A INPUT -i wlan0 -p U

udp --dport 5000 -j ACCEPT
iptables -A INPUT -i wlan0 U

-j DROP

The last line prevents the computer from
receiving any other data via the WLAN.
The first ingress rule could be even
stricter and use -s real_IP to define the IP
addresses from which traffic is allowed
to originate. This would be the real
IP address of the other end of the
connection in this case, that is -s
172.16.0.2 on the laptop.

You will also need to restrict
transmitting and forwarding of traffic:

iptables -A OUTPUT -o wlan0 U

-p udp --dport 5000 -j ACCEPT
iptables -A OUTPUT -o wlan0 U

-j DROP
iptables -A FORWARD -i wlan0 U

-j DROP

The endpoints of the tunnel only forward
packages that originate from known

partners who have access to the correct
(secret) key.

This means you can trust packets
that originate from a tun device, and
will want to accept and handle them.
You will also want to enable traffic
through the tunnel. Use the following
commands to enable incoming and
outgoing traffic:

iptables -A INPUT -i tun0 U

-j ACCEPT
iptables -A OUTPUT -o tun0 U

-j ACCEPT

This completes the configuration for
your laptop. The laptop is not attached
to any other networks, and thus does not
need to forward any traffic. The desktop
will still need a forwarding rule and
should also use masquerading to allow
the laptop to send its data onward to the
outside world:

iptables -A FORWARD -i tun0 U

-j ACCEPT
iptables -t nat -A POSTROUTING U

-o eth0 -j MASQUERADE

Limitations
One hitch with the method described in
this article is the fact that you can only
use it to secure PCs and laptops. It will
not work for a network printer with a
WLAN interface.

WLAN aware printers only provide
WEP encryption, and often only WEP-
40. At first sight, it might seem fairly
useless to misuse a printer, as attackers
would have no way of collecting their
printed output. But it is still a chink in
your security armour.

The network is only as secure as
the computers attached to it. If an un-
authorized person can access the
OpenVPN laptop, she automatically has
access to the key, and thus to your LAN.

Wireless devices are thus particularly
prone to theft.

The passwords you select for the
services on offer in your WLAN are also
important. You might find it annoying
having to type those passwords, but
having an intruder is definitely a lot
more troublesome. ■

31www.linux-magazine.com November 2002

COVER STORYOpenVPN

[1] OpenVPN:
http://openvpn.sourceforge.net

[2] TUN/TAP drivers:
http://vtun.sourceforge.net/tun/

[3] LZO library:
http://www.oberhumer.com/opensource/lzo

[4] Marc André Selig: Paketfilter-Firewall,
LinuxUser 05/2002, S. 30.

INFO

Access Control List (ACL): (in this context) A
list containing the non-editable hardware
addresses (MAC addresses) of the cards
allowed to log onto the network – normally
stored on access points and access routers.
However, there are some techniques that
allow you to spoof other hardware addresses,
and this prevents the ACL from providing any
real protection for your network – although it
certainly is another hurdle the attacker will
need to take.
Station (STA): Any WLAN device, i.e cards,
access points or access routers.
Wired Equivalent Privacy (WEP): Using
encryption technologies to achieve a security
standard equivalent to the standard
achievable in “wired”networks for data
transferred via wireless LAN that can
otherwise be sniffed by anybody interested in
doing so.The WEP-40 (40 bit key length), and
WEP-128 (104 bit key length) algorithms are
somewhat trivial, however, and can be
cracked within minutes.This means paying
particular attention to security measures in
wireless networks, such as ACLs, for example.
Access Point (AP): A central node in a wireless
network. A participating node will transfer
data to the AP which relays it to the receiver.
Today’s APs normally have an Ethernet port
allowing them to be connected to a wired
network.
Basic Service Set (BSS): A group of stations
(STA) with the same identification (BSSID).
Independent Basic Service Set (IBSS): Also
referred to as an ad hoc network where the
participating hosts transmit data directly to
each other without accessing a central node.
There is no easy way of connecting a wireless
ad hoc network to a wired network.
Distribution System: Connects multiple
wireless (BSS) and/or wired networks to form
an ESS.
Extended Service Set (ESS): A group
comprising multiple wireless networks (BSS)
with the same (E)SSID that together comprise
a larger, logical network (BSS).
(Extended) Service Set ID ((E)SSID): The ID or
name of a network.
Basic Service Set ID (BSSID): The hardware
address (MAC address) of the central node in a
network. In the case of ad hoc networks, this is
the address of any given participant, in net-
works with access points (APs) the address of
the AP.

General Terms

