
design particularly simpli-
fies programming in
C++. Open Inventor
itself uses OpenGL to
render graphics and
thus inherits its supe-
rior quality and speed.

The toolkit is far
more than just a library
that provides classes for
creating 3D graphics. Open
Inventor allows you to
describe and store 3D scenes in
so-called scene graphs, for exam-
ple. The file format developed for
this purpose was used as a template
for VRML (Virtual Reality Modelling
Language) in 1994. Open Inventor also
allows interaction with the scene. The
scene graphs can be used to identify the
objects and thus define appropriate
reactions.

Unfortunately, Coin and SoQt are not
included with every Linux distribution
(see the “Installation” insert). Both
packages contain exhaustive documen-
tation.

3D Graphics with a GUI
The biggest difference between program-
ming with Open Inventor and Coin is the
GUI integration. The following examples
use SoQt to interface with the Qt library,
Motif variants are available from [7].
With the exception of the SoQt compo-
nents, all of these examples also run on
SGI’s Open Source Variant of Open
Inventor; thus the names Coin and Open
Inventor are interchangeable in the fol-
lowing sections.

As befits a programming tutorial, our
first example will be a Hello World pro-
gram. It initializes a viewer and displays
a three dimensional text. The user can
view the text from any arbitrary position.
The code is shown in Listing 1 and can
be downloaded from [7]. The following
command compiles the program:

g++ HelloSoQt.cpp -o HelloSoQt U
-lCoin -lSoQt -I$QTDIR/include

The command binds the Coin and SoQt
libraries and uses the “-I$QTDIR/
include” option to specify the location of
the Qt header files. The results are
shown in Figure 2.

Discovering and Exploring
Virtual Worlds
The “SoQtExaminerViewer” class (line
31) provides a variety of functions that
allow you to view various sections of the
scene. The graphic follows mouse move-
ments if you hold down the left mouse
button. The viewer provides alternative
views of the scene via the wheels and
buttons on the window borders.

The three wheels are particularly inter-
esting: two of them are in the bottom left
corner, and another is located on the
lower right. The right wheel, or dolly,
influences the distance between the user
and the scene (zoom effect). The two
wheels on the left rotate the scene about
its x or y axis.

Discovery Tools
A total of seven buttons are located
above the dolly wheel on the right win-
dow margin:

For most people OpenGL, immedi-
ately spring to mind when it comes
to programming 3D worlds. Often

Open Inventor by SGI or the compatible
Coin (see “Open Inventor and Coin”) are
a better choice: OpenGL may render
graphics quickly, but it does involve
complex and time-consuming program-
ming. OpenGL’s structure and
commands are closely oriented on
graphics hardware. Compared to Open
Inventor, OpenGL is on the same level as
Assembler.

The object oriented Open Inventor
Toolkit was developed in 1991 by the
same SGI programmers that produced
OpenGL. Open Inventor maps the func-
tionality of OpenGL to objects. The

Qt and Coin, an Open Inventor clone,

make the programming of interactive

3D worlds a lot easier than OpenGL

ever has. Speed of image rendering

is not always the critical requirement.

Quick and easy to follow program-

ming may produce better results.

BY STEPHAN SIEMEN

Interactive 3D Worlds with Coin and Qt

Virtual World

72 March 2003 www.linux-magazine.com

Coin 3DPROGRAMMING

Manufacturer: Systems in Motion
License: LGPL (GPL for Version 2.0 planned)
Stable Version: Coin 1.0.3, SoQt 1.0.1
Coin Professional: Commercial license (per
developer and year 2000 US dollars), suit-
able for proprietary projects
Multi platform support: Coin runs on Linux,
other Unix type systems and Windows; you
need a C++ compiler and an OpenGL library
GUI Bindings: Currently supports Qt, Gtk+,
Motif and Windows; Coin can be used with-
out these bindings

Coin

• Arrow: Edit mode
• Hand: Interactive mode
• House: Reset camera position to

default
• Blue House: Set a camera position

(viewer angle) as the new default posi-
tion

• Eye: View the whole scene
• Lamp: Set the focus for the zoomer

(dolly)
• Box: Toggles various transformations.
All of these interactions move the cam-
era and not the scene itself. Interactive

mode is automatically enabled on
launching the viewer and allows the user
to modify the camera position and angle
as required using the GUI wheels and the
mouse. Additional settings are available
in the pop-up menu (right click).

The Scene Graph: Managing
3D Objects
Open Inventor uses scene graphs for the
efficient management of 3D scenes (3D
worlds). The scene graph has a tree
structure whose roots allow access to the

objects in a scene. The elements of the
scene graph are nodes, which contain
various functions. Each of these nodes
describes part of the image scene.

When calculating and rendering a
scene, Open Inventor works its way
methodically from the root to the leaves
(the lowest nodes) of the scene graph,
left to right and top down.

Special nodes are used to permit addi-
tional modifications, such as
transformations and rotation. These
modifications affect any subordinate

73www.linux-magazine.com March 2003

PROGRAMMINGCoin 3D

01 // SoQt header files
02 #include <Inventor/Qt/SoQt.h>
03 #include <Inventor/Qt/viewers/SoQtExaminerViewer.h>
04
05 // Coin header files
06 #include <Inventor/nodes/SoBaseColor.h>
07 #include <Inventor/nodes/SoText3.h>
08 #include <Inventor/nodes/SoSeparator.h>
09
10 int main(int argc, char **argv)
11 {
12 // Initialize SoQt library.
13 // The return value points to a Qt window
14 QWidget *window = SoQt::init("test");
15
16 // Create a "scene graph"
17 SoSeparator *root = new SoSeparator;
18 root->ref();
19
20 // Set the RGB color. Yellow in this case
21 SoBaseColor *color = new SoBaseColor;
22 color->rgb = SbColor(1, 1, 0);
23 root->addChild(color);

24
25 // Create a text
26 SoText3 *text3D = new SoText3();
27 text3D->string.setValue("Hello SoQt");
28 root->addChild(text3D);
29
30 // Create a viewer
31 SoQtExaminerViewer *b = new

SoQtExaminerViewer(window);
32 b->setSceneGraph(root);
33 b->show();
34
35 // Start the window
36 SoQt::show(window);
37 // Loop until exit.
38 SoQt::mainLoop();
39
40 // Delete viewer and reference for scene
41 delete b;
42 root->unref();
43
44 return 0;
45 }

Listing 1: “HelloSoQt.cpp”

Figure 1:The Coin library mediates between the application and OpenGL.
SoQt is used to bind the Qt GUI toolkit while SoXt is an alternative for Motif

Application

Inventor
Open

Coin

Qt-GL

Hardware

Operating System

OpenGL

SoQt

Qt

-
SoXt

Motif

Figure 2: The sample Hello SoQt program is shown in the viewer. The user
can alter the viewing position

active operations or describe various
transformations.

Nodes: Shapes, Colors,
Materials and Light
Each node is described in a class. The
name of a node class starts with “So”, as
in “SoMaterial” or “SoCone”. The “So”
prefix is omitted when describing a
scene in a file. Node names are VRML
like in this case.

Each class comprises of fields that
characterize the properties of the node.
The SGI documentation details the fields
available in each node type: the “Open
Inventor Nodes Quick Reference” and
“Open Inventor C++ Reference” are

available as PDF documents under [3]
(enter the document name you require in
the search box)

In the case of Coin and its extensions
(such as SoQt) the documentation is
included in the source code. You can use
Doxygen to generate a HTML overview.

Inserting a New Node
The following example inserts a new
node into a scene graph:

SoCone *cone = new SoCone;
hcone->height.setValue(4);
cone->parts.setValue("SIDES");
root->addChild(cone)

This creates an object of the desired
class (“SoCone” in this case) and defines
values for some fields. In our example

nodes. At this point a similarity to the
OpenGL status machine becomes appar-
ent. A property, for example the color of
a 3D object (class “SoBaseColor”)
remains active until a new value is
assigned to the property.

The programmer can organize the
objects in the scene graph to manipulate
the appearance and behavior of the gen-
erated scene.

The order of the effects is important.
Replacing a rotation with a translation
will lead to different generated results.
Open Inventor offers a variety of node
types that can define surfaces, describe
materials or adjust the camera lighting.
Other nodes provide interfaces for inter-

74 March 2003 www.linux-magazine.com

Coin 3DPROGRAMMING

Nodename Meaning Fields Standard values
SoCone Cone parts ALL (SIDES, BOTTOM)

bottomRadius 1
height 2

SoCube Cube width 1
height 1
depth 1

SoCylinder Cylinder parts ALL (SIDES,TOP, BOTTOM)
radius 1
height 2

SoSphere Sphere radius 1
SoText2 2D text string Empty string

spacing 1
justification LEFT (RIGHT, CENTER)

SoTest3 3D text string Empty string
spacing 1
justification LEFT (RIGHT, CENTER)
parts FRONT (SIDES, ALL, BACK)

Table 1 Shape Classes

In 1996 SGI handed over the development
of Open Inventor as of version 2.1 to TGS [2].
This company develops and distributes the
latest version (currently 3.1) commercially. In
August 2000 SGI decided to publish its own
Open Source Open Inventor version (2.1) for
Linux [1].
The Norwegians, Systems in Motion [4],
offer an implementation of their own, called
Coin [5], for Windows, Linux and other
Unix systems. Coin is currently available
under the LGPL license (version 1.x),
although version 2.0 is due to be released
under GPL.

More Dynamism with Coin
Coin was chosen for this article – its devel-
opment promises more dynamism than
the SGI variant. Coin attempts to implement
the new Open Inventor 3.x features,
whereas SGI has merely ported Open
Inventor 2.1 to Linux.The various extensions
provided by SIM are another good reason
for choosing Coin. In addition to the
standard Motif binding, it also supports
Qt, Gtk and Java.
These bindings are important since Open
Inventor merely describes the 3D scene; the
programmer must provide the window
frame and the binding to the window
manager. OpenGL provides the GLUT
extension for this purpose, whereas
Open Inventor decided on Motif to simplify
this task. However, alternatives such as Gtk
and Qt are simpler and more commonly
available for Linux than Motif. Qt matches
Coin perfectly, as both are implemented
in C++.

Open Inventor and Coin

Figure 3: The scene graph divides the chair into its components:seat, front and hind legs as well as lean
angle. The left and right legs differ only by their position

chair

seat color seat surface

seat

leg color post

leg

front legs

displacement 2displacement displacement 4displacement 3

leg 2

post 2

back legs back

displacement 5

rotation

back color

seat back

GeometryAppearance/DesignSeparatorTransformation

left
right

left
right

the height is set to “4” and the sides are
visible. Finally, the node is added to the
graph (called root in this case). Table 1
includes the most important shape
classes with their fields. We will be dis-
cussing how to create nodes in a
subsequent article.

These elements can be combined
to create complex structures, to display
a chair for example. To create a graph for
this purpose the scene has to be divided
into individual components. The more
components used to describe a scene,
the more realistic the results.

A Simple Chair as an Example
of a Scene Graph
A chair is fairly simple to construct;
it comprises a seat, a back, and four
legs. The legs are the same, apart from
their position. Figure 3 shows the
scene graph for this construction;
every property and the accompanying
geometry is described by an individual
object.

The object oriented approach means
that only one definition is required for
duplicate objects, as multiple instances
can be added to the scene graph.

In our chair example, the front and
rear legs are each only described once
and (following the required transforma-
tions) added to the scene graph as and
when they are needed.

This also applies to the color of the
chair legs. The source code for our exam-
ple is available to download from [7];
Figure 4 shows the results after running
the program.

Before starting to encode a program,
you should take care to plan the scene
graph, as repeated use of duplicate
objects saves memory. If multiple
instances of subgraphs (for example, the
legs in our chair example) can be used,
you will not only save memory, but
ensure that the scene graph and the
source code remain clear.

This may not seem important in the
context of our example, but in the case of
larger projects such as games or CAD
programs, the number of objects is a
vital criterion.

Documentation
If you are interested in Open Inventor
and cannot wait until the next article
appears, you might like to check out
some interesting online sources. SGI sup-
plies the most complete documentation
[3]. The “Inventor Mentor” is the Bible
for Open Inventor programmers. It

describes the features, such as setting
light and camera positions, creating
complex geometries, animating scenes
and programming interactions.

In addition to the Inventor Mentor,
you can also to download the “Open
Inventor C++ Reference Manual” from
SGI. The manual describes the classes
that the SGI version of Open Inventor
comprises, unfortunately without the
Coin extensions.

If you want to learn even more about
Coin, you might like to take a look at the
HTML documentation, which is included
with the tool.

Conclusion and Prospects
Coin and SoQt provide for fairly simple
interactive programming of three dimen-
sional graphics, without needing to leave
the (L)GPL world. The effort involved is
often trivial, particularly in contrast to
that of programming with OpenGL, but
the results are convincing. After all Open
Inventor does use OpenGL for rendering
operations.

The features described in this article
only scratch the surface of Open Inven-
tor’s capabilities. Our next article
discusses how programmers can provide
additional interaction via the menus or
with the mouse. ■

75www.linux-magazine.com March 2003

PROGRAMMINGCoin 3D

Coin requires you to pre-install OpenGL and
GLUT.The rendering speed of Open Inventor
mainly depends on OpenGL.The Mesa
OpenGL library relies on software for 3D
calculations, but optimized OpenGL drivers
are available for some 3D graphics adapters.
The author used a Geforce 2MX and nVidia’s
drivers for XFree 4.x.You should enable
hardware acceleration if possible, as Open
Inventor needs a lot of power, especially in
the case of interactions.
The Coin source code [6] is easy to compile
and install. Simply follow the familiar steps
after expanding the archive file:

./configure
make
make install

Most Linux distributions include Qt,
although you will often find that the Qt
libraries have been installed without the
header files required for programming.You
also have to compile the library with
OpenGL support. For SuSE 8.1 you will need
to install all the Qt 3.0.5 packages, set the
“$QTDIR”variable to “/usr/lib/qt-3.0.5”and
add “$QTDIR/bin”to your “$PATH”variable.
The SoQt sources are also available for
downloading at [6]; follow the compilation
steps as described for Coin. After installing
Coin and SoQt, root can invoke the
“/sbin/ldconfig”command to make both
libraries available throughout the system.

Installation

[1] Open Source Variant of Open Inventor:
http://oss.sgi.com/projects/inventor/

[2] TGS: http://www.tgs.com
[3] Technical documentation by SGI:

http://techpubs.sgi.com/library
[4] Systems in Motion: http://www.sim.no/
[5] Coin: http://www.coin3d.org
[6] Sourcecode for Coin and SoQt:

ftp://ftp.coin3d.org/pub/coin/src/
[7] Files for this article:

ftp://ftp.linux-magazin.de/pub/listings/
magazin/2003/02/3d/

INFO

Dr. Stephan Siemen works as a
scientist at the University of Essex (UK)
where he is involved with creating
software for 3D representation of
weather systems and teaches com-
puter graphics and programming.
Additional information on this subject
is available from his website at
http://prswww.essex.ac.uk/
stephan/3D/.

TH
E A

UT
HO

R

Figure 4: The chair described in the scene graph
seems already very realistical, although it only
has a few nodes described

