Information Security on Linux

Paranoia for Beginners

o matter how well your firewall
is configured, the only way to
protect yourself is to use

encrypting software, and that is what we
will be discussing in this article.

Encryption
If you have a large number of files to
encrypt, it does not make sense to do so
on a file for file basis; instead you should
opt for an encrypting file system. Fortu-
nately, this does not require a new
partition, because you can use the loop-
back device to mount normal files as
block devices (such as hard disk parti-
tions) and encrypt them on the fly
during the process.

Unfortunately, the standard loop dri-
ver only supports an XOR algorithm due
to export restrictions on cryptography
that apply in some countries. This may
protect your data from over inquisitive
siblings, but it will not stand up to a seri-
ous attack. So you will need to apply a
patch to add additional encryption algo-
rithms to the driver.

The International Kernel Patch, alias
CryptoAPI [1], which adds a variety of
algorithms to the kernel, thus allowing
encrypting file systems to be used, has
traditionally provided the best solution.
However, development of CryptoAPI has
made very slow progress since the
release of Linux 2.4, and the installation
is comparatively

If an attacker gains direct access to a computer, any data stored there is up

for grabs, even if it means physically removing the hard disk.

BY BOJRN GANSLANDT

complicated. The gap caused by this lack
of progress was quickly filled by Loop-
AES [2] - as the name would suggest,
this tool is restricted to AES encryption.

AES (Advanced Encryption Standard)
was originally known as Rijndael and
was chosen as the successor for DES
after months of testing by the National
Institute of Standards and Technology
(NIST) and many other cryptoanalyists,
so it is safe to assume that the algorithm
is robust.

Before installing Loop-AES you need
to expand, configure and compile the
kernel source code below /usr/src/linux,
as Loop-AES requires access to the
unpatched version of loop.c and several
kernel settings. When configuring the
kernel ensure that the modules Kernel
Module Loader are enabled, and that
Loopback device support under Block
Devices is disabled.

After installing the new kernel and its
modules, Loop-AES can be extracted to a
directory and compiled by typing make.
This step will not affect the current
kernel source code, as Loop-AES simply
patches a local copy of loop.c (or
accesses a previously patched version)
and then installs this as a mod-
ule. AES support for the

kernel is insufficient in
itself, as the mount, los-

etup and swapon

n March 2003 www.linux-magazine.com

programs also need modifying, although
the latter is only needed if you intend to
use an encrypting swap partition. All of
these programs are components of Util
Linux, which is available from [3].

The download version of the archive
must match the Loop-AES patch to com-
pile without errors. If the patches are in a
different directory, you will additionally
need to modify the path variable:

patch -pl < ../util-2
lTinux-2.11y.diff

export CFLAGS=-02
./configure

make SUBDIRS="1ib mount"

These steps should place the required
tools in the mount subdirectory. You
should avoid installing the programs in
/bin or /sbin, which would overwrite the
original versions, as this may cause con-
flict with other system components. It is
safer to use an alternative name when
installing the programs:

install -m 4755 -o root mount2
/bin/aes-mount
install -m 4755
/bin/aes-umount
install -m 755 losetup /sbin/2
aes-losetup

-0 root umount2

This approach also offers the advantage
of not overwriting the programs each
time you upgrade your system. The only

disadvantage is the fact that the test rou-
tine make tests in the Loop-AES directory
does not know about the alternative
names, and thus issues an error message.

Now it is finally time to create the
encrypting file system. To do so, first
create a new file that will contain the
encrypting file system. You can alterna-
tively use a hard disk partition - leave
out the following step in this case. As
you cannot increase the file size later,
ensure that the file you create is large
enough:

dd if=/dev/urandom 2
of=./secret bs=1024k count=20

This command redirects random data
from /dev/urandom to the file ./secret;
the file size is the product of bs and
count - that is 20 MB in our example.
/dev/urandom uses various internal
system events to generate random data
exactly like /dev/random. Where /dev
/random will freeze if insufficient seed
data is available, a pseudo-random
numerical generator will continue to pro-
duce output for /dev/urandom, and this
is perfectly okay for the task in hand.
The next step involves setting up the
loopback device /dev/loopl. If you want
to encrypt a partition, supply the device
name (e.g. /dev/hdb7) instead of a file
name in this step. Of course, this will
destroy any data stored on the partition:

aes-losetup -e AES128 -T /dev/U
Toopl ./secret

losetup should now prompt you for a
passphrase with at least 20 characters. If
you use the 192 or 256 variants instead
of AES128, the minimum length of the
passphrase will be 32 or 43 characters.
After the system has accepted your pass-
word, you can create a file system on the
device you have created and then disable
the device:

mkfs -t ext2 /dev/loopl2
aes-losetup -d /dev/Toopl

Of course, you can opt for other file
systems, but ext2 is your best bet in this
case. Finally, you will need to add an
entry to /etc/fstab to simplify mounting
the device in future - of course, there are
no restrictions on the mountpoint:

/directory/secret /mountpointU
ext2 defaults,noauto,loop=U
/dev/Toopl,encryption=AES128 0 0

Provided you have the passphrase, you
should now be able to access the file
system via aes-mount /mountpoint.

Wipe Out

Before you move your confidential data
to the encrypting file system, you might
like to consider how your non-encrypted
data can be effectively wiped. It is by no
means sufficient to delete this data, as
deleted files are simply cleared for over-
writing. Although the data no longer
shows up in the file system, it is still on
your hard disk and can be restored with
little effort.

Data that has been overwritten is
slightly trickier, but high resolution
microscopes should be able to reveal
data despite multiple overwrites, as the
read heads only provide a certain degree
of accuracy and traces of previous data
survive at the edges of the current mag-
netically coded bits.

Erasing data beyond the means of any
recovery procedure involves overwriting
the data with random noise and specific
patterns tailored to reflect various data
encoding techniques. Wipe [4] and
Secure Delete [5] are specifically recom-
mended for this purpose; note that this
refers to the Wipe version by Berke
Durak and not to the identically named
program by Tom Vier [6].

srm, the Secure Delete equivalent to
rm overwrites each file 38 times by
default, whereas Wipe makes do with a
mere 34 times; of course it is debatable
whether the four additional operations
make a big difference. Both programs
additionally rename the file in order to
destroy the file name and are capable of
processing directories recursively. A
quick (but unsafe) mode is available for
both programs; use the -g parameter for
Wipe and -f for srm. The tools that
Secure Delete provides in addition to srm
are the major difference between the two
tools.

For example, sfill can be used to safely
erase the free space on a partition, and
swap will also delete the swap content,
which could otherwise reveal data
swapped out of main memory. Extremely
paranoid user can additionally launch

smem to overwrite the contents of the
main memory.

Hideaway

Although cryptographic tools are quite
capable of protecting the contents of a
message from inquisitive third parties,
an encrypted file or email message will
tend to show up in a mass of clear text
messages - and this in itself might
attract the attention of an intruder.

Steganography (the art of hidden writ-
ing) provides a solution to this issue by
hiding information in a harmless host
medium such as an image without any
recognizable manipulation.

JPEGs and other image formats are
typical hosts as they are inconspicuous
and large enough to transport confiden-
tial data. The simplest, and for this
reason probably the most common tech-

GLOSSARY

Encryption: An algorithm that typically uses
a key is applied to the clear text to transform
it into an encrypted message.

XOR: XOR (exclusive or,) is an operation
that returns o when both bits it is applied to
are identical. The result is 1 for different val-
ues. XOR encoding simply adds the clear text
and the key bitwise. The same procedure is
repeated to decrypt the message, as the key
cancels itself out (KO SO S = K). This type

of encryption is only safe if the key is not re-
peated; that is where the key is the same
length as the message itself (see One time
pad).

Patch/Kernel patch: A patch file contains
instructions on modifications to one or multi-
ple files. This saves download time, as you
only need to apply the patch file for the new
program version to the existing source code,
instead of having to download the new
source code.

PRNG: A Pseudo Random Number Generator
is an algorithm that outputs extremely long,
seemingly random data sequences. If the
PRNG is used in a cryptographic context, pre-
dictable output must be avoided as the entire
cryptographic infrastructure is otherwise vul-
nerable. Open source algorithms avoid this by
using a random seed that needs to be kept
secret, just like a cryptographic key, and often
comprises user dependent events.
Mountpoint: A mountpoint is the point
where a file system is inserted. After mount-
ing, the content of the file system is displayed
as part of the directory chosen as the mount
point hiding any data in this directory.

www.linux-magazine.com March 2003 ﬂ

nique to embed data in uncompressed
image formats, such as BMP, is to alter
the least significant bits of the RGB
values (see Insert 1) - after all, this does
provide three bits of storage per pixel.

Only the least significant bits are
manipulated, as they have the least
impact on color values, and the effect on
the image is thus restricted to more or
less invisible color nuances.

JPEGs images are a more complicated
issue, as the image is not simply stored
pixel-wise, but translated into frequency
coefficients by so-called discrete cosine
transformation.

The coefficients are subsequently
quantised, which means that high-fre-
quency coefficients (details that the eye
can hardly detect) are rounded to zero.
Some image information is lost during
this process, and this is why JPEG is
referred to as an image loss compression
method.

As the image is then additionally com-
pressed (without any further loss) it is
more difficult to manipulate the actual
bytes than it would be with a BMP, for
example. Instead, the least significant
bits of the individual coefficients are
overwritten before the loss-free compres-
sion of the image begins.

In both cryptography and steganogra-
phy there is constant competition
between new algorithms and analytical
processes. Thus, the above mentioned
method can be broken both by visual
attacks and a statistical method. The
method relies on recognizing atypical
hue value distribution patterns in manip-
ulated images.

A program called OutGuess [7] pro-
vides one possible solution to this issue,
as it avoids changing the typical fre-

quency coefficient distribution patterns
and is thus resistant to analytical meth-
ods. In practical terms, this means that
for every frequency coefficient manipu-
lated within an image, a matching
coefficient is manipulated in exactly the
opposite direction.

So, if a value of 2 is replaced by a 3 at
one position, OutGuess will convert a 3
to a 2 at another position. The Java tool
F5 [8] also resists statistical attacks by
decrementing the coefficient values
instead of simply overwriting individual
bits; the JPHS tool [9], which we will not
be looking into in this article, is equally
resistant.

Although they use different mathemat-
ical methods, all of these programs are
used in a similar way. You need a host
image, the file with the data to be hid-
den, and a password that is used to
additionally encipher the data. The addi-
tional cipher is required to prevent the
hidden file from being revealed simply
by launching the program, depending on
the strength of the algorithm.

You should additionally be aware of
the fact, that an image cannot be used
more than once, and that the original
should not be available on the Internet
or from any other public source, as the
steganographic message could be
extracted by simply comparing the image
with the original. After selecting a suit-
able image, you can use the following
commands to embed the hidden infor-
mation:

outguess -k "Bigger is Better"2
-d crypto.txt my.jpg my2.jpg

You need a Java Runtime Environment to
run the F5 tool. The syntax is as follows:

java -mx40M -classpath $CLAZ
SSPATH: /usr/Tocal/f5 Embed 2
-e crypto.txt -p "Bigger is 2
Better" my.jpg my2.jpg

The $CLASSPATH environment variable
contains the path to the classes of the
Java Runtime Environment and
/usr/local/fS is the directory where the
F5 tool resides. If you use JRE 1.4 by Sun
or Blackdown, the command should
work without the $CLASSPATH: syntax.
The secret message is extracted using the
reverse syntax:

outguess -k "Bigger is Better"2
-r my2.jpg cryptol.txt

Or with the F5 tool:

java -mx40M -classpath $CLASS2
PATH:/usr/local/f5 Extract -e 2
crypto2.txt -p "Bigger is 2
Better" my2.jpg

Unfortunately, new mathematical meth-
ods have been developed to break the
algorithms used by F5, OutGuess and
JPHS. The program authors will of
course respond to the challenge - but it
is safe to assume that the capacity for
hiding information will drop again in the
next generation of software. So it makes
sense to use an MP3 file as a host
medium. Even if the embedding capacity
drops to less than one percent, an MP3
should still offer plenty of space. A pro-
gram called MP3Stego leverages this
potential and embeds messages while
encoding MP3 files [10]. The following
commands are used to hide or extract
messages — note that the WAV file must
be 16 bit format:

GLOSSARY

Discrete Cosine Transformation: Discrete
Cosine Transformation (DCT), which is closely
related to Fourier transformation, is applied to
an image block measuring 8x8 pixels during
JPEG encoding and transforms the three
dimensional topology (the third dimension is
derived from the pixel values) of the block to a
discrete frequency amplitude assignment. The
frequency of the individual frequency coeffi-
cients is used as the scale for modifications to
the image; thus a uniform surface will be rep-
resented by a low frequency, whereas
high-resolution details will be represented by
higher frequencies.

History/.bash_history: The Bash (and most
other shells) store the commands typed during
a session in a history file (which defaults to
~/.bash_history). You can use the unset HIST-
FILE syntax to delete the environment variable
that points to the history file and thus make it
impossible to store any commands.

One time pad: One time pad involves encrypt-
ing a message with an absolutely random key
of the same length as the original clear text.
Traditionally,a modulo 26 (that is the remain-
der after dividing the sum by 26) addition was
performed for the each letter of the message
and the key. Today, most people tend to XOR

binary messages and keys. Provided that the
key really is random, and is only used once,
there is no way to break this algorithm. The
disadvantage is that you need a large amount
of random data, and that the key is just as
long (and thus in many cases equally as diffi-
cult to keep a secret) as the message itself.

Keyboard logger: A keyboard logger is a pro-
gram or device that grabs keyboard input,
thus revealing passwords and other confiden-
tial data.

PGP/GPG Mantra: A mantra is a password
used by PGP and GPG to encrypt the private
key and protect it from undesired access.

m March 2003 www.linux-magazine.com

Action Help

Unfortunately, all

Criginal image Jusrflocal /f5/my.ipg

Choose

Enciphered Image: | fusr/local /f5/my2.ipa

e the other tools do

Message File: Jusr/local ffS /ferypto.tut

80 —

Quality:

Chosse not offer this fea-
ture - so the

pass phrase: | My Passphrasd

passphrase ends

Starting Encipher...

Result:

up in your shell
history. If you

EL

= want to keep your

Figure 1: F5 also offers a GUI frontend

encode_ix86 -E crypto.txt 2
my.wav my.mp3

decode_ix86 -X my.mp3 2
my2.wav crypto2.txt

MP3Stego insists on playing the WAV file
(or what’s left of it) in addition to out-
putting the hidden message, but you can
prevent this “feature” by specifying
/dev/null instead of my2.wav

One particularly convincing feature
that MP3Stego offers is the fact that you
are not required to supply a passphrase
when launching the program.

Instead, you are prompted for the
passphrase after launching the tool.

Box 1: Least significant bits

Many steganographic algorithms manipu-
late only the least significant bit.To
understand how this works, you must be
aware of how numbers are represented in a
binary context. Let’s use a pixel in a 24 bit
BMP file as an example: the hue values for
this pixel are defined by the ratios of red,
green, and blue (RGB). Our BMP file uses one
byte (8 bits) for each hue value, that is 24
bits per pixel.

BMP files store hue values in inverse order.
The binary representation is thus as follows:

Blue Green Red
Decimal 198 13 47
Binary 11000110 01110001 00101111

If the bits 101 are now embedded, the least
significant bits in the three color bytes are
modified as follows:

Blue Green Red
Decimal 199 m2 47
Binary 11000111 01110000 00101111

Expressed as a decimal, modifying these bits
will mean a maximum deviation of 2

thatis o,+/-1.Thus the least significant bit
has the smallest possible affect on the
numerical value, and the hue; in fact, the
human eye should not be able to detect any
difference from the original.

password a secret,

you might like to
disable your (Bash) history by typing
unset HISTFILE for the remainder of the
current session.

Advanced Paranoia

When dealing with encryption, you
should be aware that neither AES, nor
any other cryptographic algorithm (with
the exception of the extremely impracti-
cal one time pad) can be mathematically
proven to be secure, although they have
proved resistant to attacks launched by
the international cryptoanalysis
community.

Additionally, it is by no means suffi-
cient to regard the algorithm as an
isolated occurrence - often, a completely
different area of the system will prove to
be the weakest link. Thus, a keyboard
logger or a cleverly hidden camera can
reveal any data entered by a user, includ-
ing their PGP/GPG mantra, and
circumvent any security measures.

Electromagnetic emission is another
weak point of typical computer systems,
and almost any PC component (espe-
cially the display) will produce it. A
program called Tempest for Eliza [11]
shows how easy it is to receive emis-
sions, even using the most simple
means, by creating special patterns on
screen that can be picked up by radio
receivers.

Of course, it is possible to insulate
your computer room, but signals are
transmitted by any cables to which the
computer attaches and this makes insu-
lation extremely difficult. Your best bet is

ghijklmMnopgrs
6 7 E LA [1

Enter grid column (lowercase) then row (uppercase):_

Figure 2: gpggrid provides — admittedly round-
about - protection from keyboard loggers

Cryptography SYSADMIN

to use a laptop in an insulated room, and
if possible, to run Tinfoil Hat Linux [12]
on it. This distribution fits on a single
floppy and comprises both GPG and
(Tom Vier’s) Wipe. gpggrid provides pro-
tection against keyboard loggers by
allowing you to choose a mantra letter
by letter from a randomly generated
matrix.

Additionally, the “Paran0id” option in
the Tinfoil menu activates an extremely
low contrast color mode that should
make eavesdroppers life difficult (or
your optician happy, as the case may
be). With this option GPG continually
encrypts files in the background, to dis-
tract you from your own GPG instance.

Another tool that is useful in situations
where you cannot trust your own screen
is morseblink, which can be used to send
messages by morse code via the key-
board LEDs. In “Paran0id” mode
morseblink is used to transmit random
morse code and thus overlay any emis-
sions the keyboard might produce. In
standard mode you can use the following
command to morse code a file:

cat text | morseblink

Finally, the Tinfoil Hat README [13]
recommends wearing a hat made of alu-
minium foil to protect your own
thoughts from both external influences
and reading - although one might be
tempted to question the seriousness of
this recommendation.]

[1] http://www.kerneli.org/

[2] http://loop-aes.sourceforge.net/

[3] http://www.kernel.org/pub/linux/utils/
util-linux/

[4] http://gsu.linux.org.tr/wipe/

[s] http://freshmeat.net/projects/
securedelete/

[6] http://wipe.sourceforge.net/

[7] http://www.outguess.org/

[8] http://wwwrn.inftu-dresden.de/
~westfeld/fs.html

[9] http://linuxot.gwdg.de/~alatham/stego.
html

[10] http://www.mirrors.wiretapped.net/
security/steganography/mp3stego/

[11] http://www.erikyyy.de/tempest/
[12] http://tinfoilhat.shmoo.com/
[13] http://www.zapatopi.net/afdb.html

magazine.com March 2003 “

