
be tedious and inconvenient, to say
the least.

LinuxBIOS also provides a good
amount of bootup diagnostic informa-
tion on the system’s serial port, and
allows control of the bootup process
from a serial terminal as well. This can
make debugging of hardware problems,
or reconfiguration of a system, much
easier than the usual vendor-specific
keyboard-and-screen method.

This article shows you how to swap
your BIOS chip for LinuxBIOS, and
explains the detailed steps necessary to
compile the kernel and program the code
into a LinuxBIOS chip. Note that since
LinuxBIOS is still very much a work in
progress, some details might have
changed since this article was written.

Hardware
The first thing to check if you’re plan-
ning to create a LinuxBIOS system of

your own is whether your motherboard
is compatible and supported. A very
wide range of motherboards, from an
impressive list of manufacturers, are
supported by the LinuxBIOS project, and
your first step should be to check on the
LinuxBIOS website to find out which
models are likely to work. The most
important requirement for a mother-
board to run LinuxBIOS is that it has a
BIOS chip which is removable from its
socket, since this is how you change the
physical chip containing the old BIOS
code for a larger capacity memory chip
containing the LinuxBIOS code.

This article describes the PC-Chips’
M810LMR motherboard, which is a fairly
cheap but nicely integrated board, con-
taining on-board VGA, ethernet and
sound. However, the steps needed for
installing LinuxBIOS on any other sup-
ported motherboard are very similar to
those shown here.

LinuxBIOS releases yet another part
of your PC to Open Source software
– in this case, the BIOS chip itself.

BIOS stands for Basic Input Output
System, and the BIOS chip is installed on
the motherboard by the manufacturer,
and which most users, no matter which
Operating System they run on their
computer, hardly ever think about. They
only ever see the BIOS screen when the
machine is first booting up, and it is
usually taken for granted as simply
another piece of the hardware, which
hardly anyone ever considers the idea of
changing.

The code inside the BIOS chip (which
is simply a non-volatile memory device,
so that the software is available immedi-
ately the computer is powered on) is
responsible for starting up the machine,
checking for the presence of hardware
such as memory and disk drives, and
then initialising them so that the real
operating system can start booting.
Without the BIOS, your computer would
do absolutely nothing when it was
turned on, because the BIOS contains
the very first instructions which the CPU
executes in order to start everything
working.

The LinuxBIOS project replaces the
normal BIOS code on your motherboard
with the Linux kernel itself, so that your
machine boots instantly into Linux
within seconds of turning it on.

LinuxBIOS has more advantages than
simply very fast boot times, however.
LinuxBIOS has been mainly developed
for cluster systems, because it allows
far greater remote management and
configuration than a standard BIOS chip
does. If you have lots of servers
configured in a cluster, and you need
to change a (normal) BIOS setting, then
going around connecting a screen and
keyboard to each machine, rebooting
and making a manual change can

If you haven’t come across the LinuxBIOS project [1] yet, you may be amazed at

what it sets out to do. BY ANTONY STONE

The LinuxBIOS project

Putting Linux on your
motherboard

76 March 2003 www.linux-magazine.com

LinuxBIOSPROGRAMMING

The other main item of hardware
required in order to create a working
LinuxBIOS system is the Disk-on-Chip
memory device, which will be plugged
into the BIOS socket on the mother-
board, and which has the capacity
to contain the Linux kernel and the small
amount of bootstrap code which
LinuxBIOS generates to initialize the
motherboard hardware.

Disk-on-Chip devices are memory
chips which can be “formatted” to appear
like a hard disk device, and which can
contain a standard Linux filing system.
The LinuxBIOS project uses the Disk-on-
Chip (DoC) to hold the bootup code, and
also optionally a root filing system (so it
is in fact possible to create a completely
standalone diskless machine).

The specific DoC device used in this
project is the M-Systems’ MD-2800-D08
(part number MD-2802-D08 is a suitable
alternative as well). This device is an 8
megabyte flash-programmable device
which fits into the standard 32-pin
socket used by the 2 megabit BIOS chip.
Note the slightly confusing contrast
between the DoC devices, which are
measured in bytes, and the standard
Flash Rom BIOS chips, which are
measured in bits. The DoC has a
capacity 32 times that of the BIOS chip it
is replacing; the simple reason for this
being that it is not possible to fit the
Linux kernel into 2 megabits.

Finally, it is highly recommended that
you obtain a 32-pin Zero Insertion Force
(ZIF) socket in order to make removal
and insertion of the BIOS and DoC
devices simple and safe. Part of the
process for programming the code into
the DoC device involves removing the
standard BIOS chip and replacing it with
the DoC device – while the power is on
and the motherboard is running.
Attempting this without the use of a ZIF
socket is definitely not recommended.

Getting started
The first thing you should do is read the
LinuxBIOS FAQ, available from the web-
site [1], and also the LinuxBIOS
documentation for your chosen mother-
board, which in the case of the
M810LMR being used here, is based
around the SiS630 chipset. The FAQ
gives you a good idea of the overall
process, and the steps involved.

Note that, although it is possible to use
a “development system” for creating the
LinuxBIOS code, programming this into
the DoC, and then placing this into a
separate “target system” which will
actually run the code, it is in fact just as
simple, and more convenient, to use a
single machine as both development and
target systems at the same time. It is
assumed that you are already familiar
with performing a basic Linux
installation on a machine, and that you
are comfortable with compiling a kernel
and installing it. The steps involved in
creating a LinuxBIOS machine are:
• Install Linux on your target machine,

including support for the flash DoC
devices (which most kernels will not
have as standard)

• Get the LinuxBIOS source code
• Get the correct Linux kernel source,

patch it and build it
• Configure and build the LinuxBIOS

boot code for your motherboard
• Get the Memory Technology Devices

(MTD) utilities and build the “erase”
utility

• Remove the BIOS chip from its socket
(with the power on!) and put a Disk-
on-Chip in its place

• Burn the LinuxBIOS image containing
the boot code and the kernel into the
Disk-on-Chip

• Hit reset to start the new LinuxBIOS
system.

It is a good idea to plug the ZIF socket
into the motherboard, and then place the
original BIOS chip into the ZIF socket in
order to start the system up (Figure 1).

Firstly, note the orientation of the BIOS
chip in its socket (there is a notch at one
end, or a dot in one corner, of the chip),
remove the chip, and plug the ZIF socket
into the motherboard socket. Place the
lever of the ZIF socket at the same end of
the socket as the notch or dot was on the
BIOS chip.

You may need to bend the pins of
connectors nearby to get the ZIF socket
to fit – on the M810LMR there is an
unused 3-pin fan connector in the way.
Make sure you plug the ZIF socket
cleanly into all 32 holes on the socket on
the motherboard – it’s easy to miss a
couple of pins at one end and get the
whole thing moved along one place. You
will probably want to do this with the
motherboard not installed in a case, so

you can look underneath the ZIF socket
as you are inserting it.

Once the ZIF socket is in place, lift the
lever, insert the original BIOS chip (plac-
ing the notch or dot at the lever end of
the socket) and lower the lever to secure
the chip in place. Then reassemble the
motherboard into the case and power up
the system to make sure you get the
usual BIOS startup screen, confirming
that the ZIF socket and BIOS chip are
correctly installed.

If you don’t already have Linux
installed on the machine, install a basic
Linux system; note that you will require
the usual development tools (compilers
etc.) for building your own kernel, and
you will also need to install Python, as
this is used to create the configuration
files used for LinuxBIOS.

The first thing you should do after
installing the basic system is compile the
kernel which will be used to create the
LinuxBIOS system, so that it contains
support for MTD (Memory Technology
Devices), which is unlikely to be
included in a standard kernel. It is
important that you have support for
loadable modules on the development
machine, since for programming the DoC
device in the BIOS socket of the mother-
board, it is necessary to run a command
before loading the DoC support modules,
and therefore you cannot compile this
support directly into the kernel.

If you use make menuconfig to config-
ure your kernel, the additional options
you need to select (accurate for a 2.4.19
kernel) in order to build LinuxBIOS into
a DoC device are given in Listing 1.

There is an important change needed
in one of the kernel source files in order

77www.linux-magazine.com March 2003

PROGRAMMINGLinuxBIOS

Figure 1: The ZIF socket plugged into the mother-
board, with the original BIOS chip inserted

about failed to open ./cvspass for
reading, and even login aborted: fatal
error: exiting. Carry on with:

export CVS_RSH=ssh
cvs -d:pserver:anonymous@cvs.U
freebios.sourceforge.net:U
/cvsroot/freebios login
cvs -z3 -d:pserver:anonymous@U
cvs.freebios.sourceforge.net:U
/cvsroot/freebios co freebios

Note that the LinuxBIOS project has
grown from an earlier project named
FreeBIOS, and therefore this directory
name will appear throughout the files
used in compiling the LinuxBIOS system.
Before unpacking a fresh kernel source
to patch with LinuxBIOS, check the Lin-
uxBIOS kernel patches to see which
kernel version is supported for your
motherboard / chipset.

You may be able to apply the patches
to a different kernel, but at this stage in
the game it’s probably better to build an
old kernel strictly by the instructions,
and make sure you can get LinuxBIOS
working at all. Then afterwards you can
try to bring the kernel up to the version
you’d like it to be.

This article discusses kernel version
2.4.19, because this was the most recent
kernel patch file available for the
M810LMR motherboard. In this case the
patch file is called linux-2.4.19-sis.patch
and is found in the FreeBIOS source tree
under freebios/src/kernel-patches. This
directory contains both the patches for
the kernels, and also sample config files
for building the new kernel (note that
not all of these are guaranteed to work in
all situations – you may need to look at
other config files and make some manual
adjustments to get your particular setup
working).

It is important to recognize that the
kernel patches and config files are for the
kernel you will eventually program into
the DoC device and boot your LinuxBIOS
machine from. They may not be the best
choice for the kernel which you use to
build LinuxBIOS and burn the DoC
before rebooting it. When you build the
kernel, simply use make bzImage and
then leave the compiled kernel where it
is. LinuxBIOS will later look for the file
/usr/src/linux/vmlinux as the image to
be included in the DoC device.

Building LinuxBIOS
It is recommended that you create your
own config file based on one of the
examples, and make the build images for
programming into the DoC device, in a
different directory outside the FreeBIOS
source tree. This will ensure that they are
not deleted when you update your copy
of the source code from the CVS reposi-
tory. Because of the way the directory
names are arranged, it is recommended
that you create a new directory called
linuxbios side by side with freebios, and
build the DoC images in there:

mkdir linuxbios
cd linuxbios
cp ../freebios/util/config/U
NLBConfig.py .
cp ../freebios/util/config/U
pcchips.config .

to get MTD support working properly. If
you do not make this change, you will
get errors later on when you try to erase
or program the device, such as:

/dev/mtd0: No such device
/dev/mtd0: Bad file descriptor

The change required is in the kernel
source file /usr/src/linux/drivers/mtd/
devices/docprobe.c. Change the line
which reads:

#define DOC_SINGLE_DRIVER

so that it becomes:

#undef DOC_SINGLE_DRIVER

Next, get the LinuxBIOS source by CVS
from sourceforge. Press [Return] at the
password prompt and ignore errors

78 March 2003 www.linux-magazine.com

LinuxBIOSPROGRAMMING

Loadable module support
[*] Enable loadable module support
[] Set version information on all module symbols
[*] Kernel module loader

Memory Technology Devices (MTD)
<M> Memory Technology Device (MTD) support
[] Debugging
< > MTD partitioning support
< > MTD concatenating support
--- User Modules and Translation Layers
<M> Direct char device access to MTD devices
< > Caching block device access to MTD devices
< > Readonly block device access to MTD devices
< > FTL (Flash Translation Layer) support
< > NFTL (NAND Flash Translation Layer) support
RAM/ROM/Flash chip drivers --->
Mapping drivers for chip access --->
Self-contained MTD device drivers --->
< > Ramix PMC551 PCI Mezzanine RAM card support
< > Uncached system RAM
< > Test driver using RAM
< > MTD emulation using block device
--- Disk-On-Chip Device Drivers
< > M-Systems Disk-On-Chip 1000
< > M-Systems Disk-On-Chip 2000 and Millennium
<M> M-Systems Disk-On-Chip Millennium-only alternative driver
[*] Advanced detection options for DiskOnChip
(0) Physical address of DiskOnChip
[*] Probe high addresses
[] Probe for 0x55 0xAA BIOS Extension Signature

NAND Flash Device Drivers --->

Listing 1: Kernel options required

The first cp command copies the Python
program which is used to process the
configuration file, so that it is in a
convenient place for use later on, and
the second copies the standard
pcchips.config file (which is the one
appropriate to the motherboard used in
this article) into the newly-created
linuxbios directory, where we shall be
carrying out the work. Having copied the
pcchips.config file into the working direc-
tory, edit the new file and make the
following changes:
• Remove single from the end of the ker-

nel commandline, so that the
LinuxBIOS machine boots into stan-
dard multiuser mode

• Add cpu k7 if you are using an Athlon
processor

• Add option ENABLE_MII=1 to get the
onboard ethernet working

• Change option HAVE_FRAMEBUFFER
to option HAVE_FRAMEBUFFER=1
(this is simply to eliminate a warning
message later on).

There may also be some editing of files
needed in the LinuxBIOS source tree –
for example, in the version of LinuxBIOS
being used here, a change is needed in
order to get the keyboard working on
this particular motherboard. In the file
freebios/src/arch/i386/lib/hardware-
main.c, uncomment the function call
keyboard_on() around line 344. If you
don’t do this, then when you finally boot
your LinuxBIOS machine, you will get
several hundred error messages pc_keyb:
controller jammed (0xFF), and your key-
board will not work. It will not stop your
LinuxBIOS system from working, how-
ever – you will still be able to log in on
the serial port, or ssh across the net-
work.

After making these changes, run the
Python program to create the build files:

python NLBConfig.py U

pcchips.config ~/freebios

This creates a subdirectory within the
linuxbios directory called pcchips, and
creates the following files in it:

LinuxBIOSDoc.config
Makefile
Makefile.settings
crt0_includes.h
nsuperio.c

Once you have these files, and you have
compiled your target kernel (which is
left sitting in /usr/src/linux/vmlinux),
you can run the makefile to build your
LinuxBIOS image:

cd pcchips
make clean
make

Next copy the burn_mtd utility into the
newly-created pcchips directory, because
by default burn_mtd looks in the current
directory for the source files to burn into
the DoC device, so there’s a lot less typ-
ing involved if the utility is in the same
place.

cp ../../freebios/util/mtd/U
burn_mtd .

The burn_mtd utility doesn’t quite
match the filenames generated by the
Makefile, so it is useful to edit burn_mtd
(which is simply a shell script), in order
to use the correct names: Change the
first two occurrences of vmlinux (one in
the comment on line 3, the other in
linux=vmlinux.bin.gz on line 16) to
linux (so that line 16 now reads
linux=linux.bin.gz).

The next step is to get the MTD utili-
ties from [2] and build the “erase” utility
– simply download the current version of
the kernel tools under the ChangeLog
section, and then make erase in the util
subdirectory of the download.

The final utility needed for program-
ming the DoC devices is flash_on from
the freebios/util/sis directory. This utility
allows you to use the BIOS socket on
your motherboard as a flash programmer
(thus saving the need for an expensive
separate piece of equipment specially for
this job):

cd ~/freebios/util/sis
make flash_on

Copy the “erase” and “flash_on” utilities
which you just built into your search
path (for example /usr/local/sbin). Now
comes the interesting part of program-
ming LinuxBIOS – removing the BIOS
chip from a live, running motherboard,
and replacing it with the Disk-on-Chip.

This is the point where you are
grateful you got yourself a 32-pin

ZIF socket and plugged it into your
motherboard.

Programming the chip
With the power on and your system run-
ning, release the lever on the ZIF socket,
remove the original BIOS chip and
replace it with a Disk-on-Chip. Be very
careful to get the orientation correct (the
notch in the end of the chip goes at the
lever end of the socket) and make sure
the pins are lined up properly – remem-
ber that the socket has power on it.
Secure the DoC in place with the lever on
the ZIF socket. Run the command:

./burn_mtd

and it should program a LinuxBIOS chip,
ready to run on your motherboard. The
output of burn_mtd should look some-
thing like:

./burn_mtd
rmmod: module docprobe is not
loaded
rmmod: module doc2001 is not
loaded
rmmod: module docecc is not
loaded
11+1 records in
12+0 records out
0+1 records in
1+0 records out
Erase Total 1024 Units
Performing Flash Erase of length
8192 at offset 0x7fe000 done
1+0 records in
1+0 records out
1+0 records in
1+0 records out
126+0 records in
126+0 records out
1536+0 records in
1536+0 records out
#

If at this stage, you get the following
instead:

./burn_mtd
rmmod: module docprobe is not
loaded
rmmod: module doc2001 is not
loaded
rmmod: module docecc is not
loaded
11+1 records in

79www.linux-magazine.com March 2003

PROGRAMMINGLinuxBIOS

system etc.). They can easily get sorted
out later. The important thing at the
moment is to have a running kernel at
all. If you do not get a penguin on your
screen followed by the normal kernel
startup messages, and in fact get nothing
at all, then the best way to discover what
is happening with LinuxBIOS is to plug a
serial cable into the first RS232 port, con-
nect another system running a serial
terminal emulator such as minicom (set
to 115200 baud, 8 bits, no parity), and
press reset. You should get some
debugging information and startup
messages displayed on the terminal,
which will help to indicate how far
through the startup process the system is
getting. If absolutely nothing happens,
then it’s possible that you haven’t got a
suitable image burned into the DoC, so
power off the motherboard, remove the
DoC and put the original BIOS back in
again, power the system back up, and
see what you have missed from the
above instructions.

Silicon disk
The last thing you may want to do once
your system successfully boots the Linux
kernel directly from the Disk-on-Chip, is
to create a root file system in the remain-
der of the 8 megabyte capacity of the
DoC, so that you can dispense with the
hard disk drive inside your machine alto-
gether. You will need a few more MTD
kernel options turned on in your

development system
(to format and write
the root fs) and this
time also in the kernel
running in the target
(so that it can read
from the MTD-based
file system). The
options you should
enable during make
menuconfig for the
kernels are shown in
listing 2.

Once you have
recompiled the ker-
nels (remember to
install the kernel
to the development
system, and reboot,
then leave the kernel
image generated by
make bzImage in /usr/

src/linux/vmlinux), you should be able
to create and format a partition in the
remaining capacity of the Disk-on-Chip
device:

nftl_format /dev/mtd0 0x100000

nftl_format is in the linuxbios/mtd/util
directory. You can then use fdisk
/dev/nftla to create a single primary par-
tition, occupying the entire available
device (about 7 megabytes), and then
format this with mke2fs /dev/nftla1 in
the usual way. You can change the
device where the LinuxBios kernel
expects to mount the root file system by
modifying the compiled kernel image
(before burning it into the DoC):

rdev /usr/src/linux/vmlinux U

/dev/nftla1

For suggestions on what to place into
such a small root fs and still have a
working Linux system, consult one of
the tiny distributions such as Tom’s Root
Boot [3].

Conclusion
I found the LinuxBios project absolutely
fascinating, and it is an incredible way to
boot your machine directly into Linux
quickly, easily, and at very little expense.
I hope that you have as much fun with
the system as I have. ■

12+0 records out
0+1 records in
1+0 records out
File open error
dd: opening '/dev/mtd0':
No such device
dd: opening '/dev/mtd0':
No such device
dd: opening '/dev/mtd0':
No such device
dd: opening '/dev/mtd0':
No such device
#

then you should check the kernel run-
ning on your machine: ensure that you
edited the file /usr/src/linux/drivers/
mtd/devices/docprobe.c to undefine
DOC_SINGLE_DRIVER before building
the kernel, that you selected the MTD
options listed earlier, and that you
rebooted the machine after building the
kernel so that it is now actually running.

If the burn_mtd output looks good,
reboot your machine to test the code pro-
grammed into the DoC. If your system
reboots and you see a penguin in the top
corner of your screen instead of an AMI
or Award BIOS startup message, then
you have succeeded in creating a Lin-
uxBIOS system, booting the Linux kernel
directly from the DoC instead of the hard
disk boot sector as usual.

Do not worry if bits of the system do
not seem to get started properly (e.g.
hard disk, ethernet, keyboard, root filing

80 March 2003 www.linux-magazine.com

LinuxBIOSPROGRAMMING

[1] LinuxBIOS website:
http://www.linuxbios.org/

[2] Memory Technology Device (MTD)
Subsystem for Linux:
http://www.linux-mtd.infradead.org/

[3] Tom’s Root Boot:http://www.toms.net/rb/

INFO

Antony Stone has a
degree in Medical
Electronics, and has
been working with
Linux since 1994. He is
Technical Director of
Rockstone Ltd, a UK
company producing
Linux-based Firewalls, and is a contrac-
tor to Hewlett-Packard Laboratories,
working on secure operating systems
design. He is a part-time lecturer on
the Information Security MSc at the
University of London.

TH
E A

UT
HO

R

Memory Technology Devices (MTD)
<M> Memory Technology Device (MTD) support
[] Debugging
< > MTD partitioning support
< > MTD concatenating support
--- User Modules and Translation Layers
<M> Direct char device access to MTD devices
< > Caching block device access to MTD devices
< > Readonly block device access to MTD devices
<M> FTL (Flash Translation Layer) support
<M> NFTL (NAND Flash Translation Layer) support
[*] Write support for NFTL (BETA)
RAM/ROM/Flash chip drivers --->
Mapping drivers for chip access --->
Self-contained MTD device drivers --->
NAND Flash Device Drivers --->
<M> NAND Device Support
[*] Enable ECC correction algorithm
[] Verify NAND page writes

Listing 2: Kernel options for MTD support

