
Sure it is. So have a look at how this
can be simply done. Whenever we need
to increase security we can use a One
Time Password (OTP). We typically find
this in banking and other financial sec-
tors where the data has a defined
monetary value. Even if the password is
stolen, security is not compromised as
for each use a new OTP is generated.

We can use several policies of assign-
ing OTPs including pre-printed OTP
sheets, specialised software components
or even the hardware authentication cal-
culators, which are now the most
preferred method.

Additional Securing of OTPs
To increase the level of OTP security it is
possible to extend the authentication
process to use some additional factors.
We usually use PINs and “challenges”
for this.

To ensure that the OTP received really
comes from a trusted party, the server
after receiving the account name sends
the user a “challenge” which then takes
part in an OTP calculation process.

The challenge is normally transported
using the same communication channel,
but for increasing safety levels it is possi-

ble to use other means of transport such
as GSM Short Message Service etc.

Possible Compromise
As a second level of access and authenti-
cation, the compromise method of
authentication may be used.

The most common system being used
is based on a set of predefined pass-
words (different for each user account)
which are organised in a matrix array.
This usually called a Grid Card, where
each cell is represented by a specific row
and column and contains a Quasi One
Time Password (QOTP). The server after
receiving the account name sends a chal-
lenge, as an example, the C4 field and
after the user picks the respective QOTP
it acts as a dynamic password for
authentication.

Available Mechanisms
Rekonix has recently introduced the
Stadrin mechanism http://www.stadrin.
com on a Linux platform using the
Pluggable Authentication Module (PAM)
architecture. This can aid in the
implementing of OTPs on existing
systems without any need to modify
applications and services.

Static passwords are normally based
on an account name and a match-
ing password. These days this is

not ideal and so we will look at the
authentication mechanism – Stadrin.

For securing the identity of the user we
usually use static passwords. The main
problem is the way it which most users
try to keep their passwords secret. As the
passwords are the only factor used for
checking authentication, it is important
to ensure, that nobody, except the user
knows the password or even the
account/password combination.

As passwords are usually maintained
by the users, we frequently see that they
are often weak, mainly based on a
names of children, pets, date of birth,
etc., so it is quite easy to guess them and
so lead to misuse.

Sometimes the situation is made a
little bit better and the users selects their
passwords from a combination of words
with some numeric suffixes or prefixes.
Unfortunately it is still possible to find
the password using brute force tech-
niques supported by large dictionaries.

Static passwords are only secure if no
backup copy is kept, either digitally or
written on paper and in some cases this
is even on the PostIt note stuck on the
monitor.

Even if we have a strong password and
it is securely stored, the problem still
remains that security may still be com-
promised due to other factors. We can
easily imagine a Trojan capturing key-
strokes and sending them to a potential
violator or someone sniffing the Ethernet
traffic to get the passwords transported
by either clear text or encrypted.

Sometimes it is sufficient to have a
quick look over someone’s shoulder to
watch and remember what they type as a
password. The situation is similar if we
use magnetic strip cards, smart cards or
even biometrics devices. This is because
the passwords is still a static form while
it is being transferred through communi-
cation channel to a server. Is it possible
to solve this problem?

Everyday we face the problem of securing access to services on our servers. In

our personal life we can recognise the other party by their face or some form of

ID document. When it comes to electronic access, recognition is harder as the

identification may be real or stolen. BY MILAN GIGEL

Stadrin

Protecting Access

68 March 2003 www.linux-magazine.com

StadrinPROGRAMMING

Figure 1: Stadrin architecture

PAM was chosen because of its wide
usage. The system is based on using a
Stadrin module and Vasco enduser
tokens.

Token Cards
For calculating OTPs, the Stadrin module
uses a wide range of Vasco tokens. These
act in the role of calculation authenti-
cation terminals responsible for the
whole authentication process on the
client side.

Vasco tokens have been around for
many years and experience has shown
that they are resistant to everyday dam-
age with a long life between servicing.
The purpose of the token is to handle the
user specific authentication data, and act
as a calculation engine. Data used is
based on time specific data, unique user
specific stored data, manually entered
data using keypad and a 3DES algorithm
which then displays the current OTP on
an integrated LCD. The token itself is
protected against unauthorised use by a
user changeable PIN, while there is a
wide range of models available, we
chose to test the DigiPass 300 model.

The Server Side
The server itself implements the Stadrin
PAM module which uses a MySQL back-
end for storing user and token specific
data. The information that is stored
in the token is handled by a relational
database. The admin’s job is to make
relationships between accounts and ser-
vices with the token card data. It is
possible to assign the same token to
several different accounts and so access
several different services. We can force
the system to use one of the three sup-
ported authentication schemes.

Scheme 1
In live running systems providing
services and resources there is a possi-
bility of SPWD authentication. This is
the standard authentication scheme used
in PAM. For the first steps of the imple-
mentation process it is possible to
authenticate just a selected group of
target users using the tokens, while any
others can use a previous authentication
mechanism. This is very handy for
designing mixed authentication schemes
and so lowering the implementation
costs.

To extend the authentication process
so that all users are using the tokens
is quite easily and simply done by
changing the authentication policy of the
selected target users.

Scheme 2
Response Only mode (RO): The first one
from the offered authentication schemes
using token hardware is the Response
Only Mode. In this case the user uses his
token for calculating the OTP after its
activation, using a PIN code. A spe-
cialised algorithm is used for the OTP
calculation, which involves several steps
starting with fetching token specific info,
unique seed values, time stamp and ini-
tialisation vectors to be processed by a
predefined 3DES algorithm.

The variability of the OTPs is based
directly on the timestamp usage within
the calculation process, while the gener-
ated OTP is usually valid for 38 seconds
after the calculation process is finished.
This means that the server has to handle
the correct time and we can use several
mechanisms for this including NTP
implementation.

A user turns the token on by pressing
a button, enters his pin code and pushes
the “1” button for accessing the RO
application on his token. The OTP is
immediately displayed on the LCD. The
tokens are pre-programmed for the
Stadrin system default of 8 hexadecimal
characters.

Scheme 3
Challenge Response mode (CR): This is
the second authentication method using
the token backend. This mode builds on
the previous method, increasing the
security levels and variability of OTPs.
The enhancement of this scheme is
based on issuing the Challenge by a
server PAM module, which is delivered
to the user using
the same commu-
nication channel
as the authentica-
tion process itself.

Besides the vari-
able timestamp,
seed values and
initialisation 3DES
vectors used in the
RO scheme, the
challenge also

uses, as one of the inputs the 3DES, algo-
rithm used for the OTP calculation
process. Input parameters for this chal-
lenge are passed to a calculation function
with a 3DES backend to get a safe OTP.

The user is granted the generated OTP
which is valid for just 38 seconds. From
the users point of view the authenti-
cation process starts with specifying the
account name, receiving the challenge
issued by the server, activating the token
using the PIN code and entering the
received challenge to the token followed
by retyping the generated OTP to the
authentication system.

Scheme 4
Message Authentication Code (MAC):
Apart from the authentication schemes
using the token hardware described
above, there is also one more authorisa-
tion scheme available, supported by the
Vasco tokens, which we will describe
here. In this case, the authentication
process is directly interconnected with
the authorisation of transferred data, so
done by using just the one schematic
transfer.

In one pass the system is able to check
the identity of the account in use and
validate the consistency of the trans-
ferred data throughout the applications
transaction data. As within the Chal-
lenge Response mode, the challenge is
generated on the server side using the
specific PAM module, while the user
enters, along with the challenge, up to 8
numerical user fields to the token, using
keypad.

This means that the token will gener-
ate something similar to a digital
signature of the transaction, which will
include the user’s account authentica-
tion, with validation data and up to eight
system predefinable fields. This is useful
in a financial environment.

69www.linux-magazine.com March 2003

PROGRAMMINGStadrin

Figure 2: Response Only Authentication scheme

1:stadrin ###########
[100%]
Creating symbolic link for U

Vasco shared library
Done.
Install complete.
Configuring database.

The first step in the configuration
process is to specify the database back-
end information. Currently just the
MySQL backend platform is supported,
which, as said, can be present on the
same system or on any other server, in
which case this can provide us with the
possibility of creating central account
databases. We have to specify the loca-
tion and user data first (see Listing 1).

Now that we have entered the basic
data into the database, which will be
used in the creation of the database stor-
age backend creation process, we can
follow on with the next configuration
section (see Listing 2). As we have pro-
vided the root user information, all the
other creation process can be run auto-
matically using the prepared initiali-
sation script.

After following these steps the system
is almost ready to run, after providing
the licence information and setting up
the accounts and PAM system. Before
that, the MySQL backend has to be pre-
pared by the init script in order to set the
previous definitions, if all is well we get
the following message:

Creating Stadrin database user
Stadrin user created
successfully
Congratulation! Set-up is done.
Use stadrin utility to set-up
users and tokens.
For instructions see stadrin
documentation.

The user licence is distributed on floppy
diskette and has to be added to the
default configuration directory, /etc/
stadrin:

mount /dev/fd0 /mnt/floppy U

-t vfat
cp /mnt/floppy/stadrin.lic U

/etc/stadrin
chmod 600 U

/etc/stadrin/stadrin.lic

The whole configuration is in a single
file /etc/stadrin/stadrin.conf.

As we can also see, the database
access password is stored here in a clear
text form, so it is necessary to make sure,
that this file is not readable by any other
users accessing the system:

database mysql
dbname stadrin
user stadrin
password opensesame

The second half of configuration file is
composed of default properties for
account data, synchronisation parame-
ters and parameters regarding to root
account, so it will be necessary to cus-
tomise these settings to adapt to a
specific server:

active_user yes
active_token yes
method RO/CR/SPWD
max_bad 5
root_at_login_swpd yes

The default authentication scheme:

auth required U

/lib/security/pam_stack.so U

service=system-auth

can be changed to Response Only mode:

auth required U

/lib/security/pam_stadrin.so

Implementing Stadrin
The installation process of the Stadrin
authentication system is quite easy as
the package is distributed in the .rpm
format. The package requires a Linux
kernel greater than 2.2, with a glibc
library of 2.2 or better.

Of course the MySQL database is also
required and this can reside on the same
server, or something more distant,
thanks to the support of remote database
connection used in the Stadrin backend
design.

The current available version of
Stadrin is version 1.1, and is distri-
buted on CD ROM for the system and
floppy diskette containing the licence
information.

So, lets have a look at how the installa-
tion process flows. The first step is to
mount the CD-ROM drive and invoke the
installation process using the rpm
package manager:

#mount -t iso9660 /dev/cdromU
/mnt/cdrom
#rpm -ivh /mnt/cdrom/U
stadrin-1.1.rpm

The installation script is automatically
invoked to start the configuration of
Stadrin and the system files that go with
its system:

Preparing... ###########
[100%]

70 March 2003 www.linux-magazine.com

StadrinPROGRAMMING

Enter the location of MySQL database (localhost): localhost
Enter name of MySQL administrator (q to quit) [root] : root
MySQL administrator is root
Is it correct? (yes/no/q/quit) [no] : yes
Enter password of MySQL administrator root
!!! WARNING : password will be visible !!! : opensesame
Is it correct? (yes/no/q/quit) [no] : yes

Listing 1: Specifying location and user data

Enter name of database for stadrin [stadrin] : stadrin
Database name is stadrin
Creating stadrin database with name stadrin
Database created successfully.
Tables created successfully.
Enter name of user for stadrin database [stadrin] : stadrin
Stradrin database user is stadrin
Enter password of stadrin user stadrin :opensesame
Stadrin user will have password opensesami.

Listing 2: Creating the database

#auth required U

/lib/security/pam_stack.so U

service=system-auth

or to the Challenge Response mode with:

auth required U

/lib/security/pam_stadrin.so CR
#auth required U

/lib/security/pam_stack.so U

service=system-auth

This is the right place to notice that all
the common services natively support
SPWD and RO authentication scheme,
while the CR scheme is only supported
by the login service.

User Token Definitions
After activating the authentication
schemes we have to make definitions for
the user accounts and the tokens. The
simplest way is to import users from
/etc/passwd using the command:

stadrin -sync

Alternatively, we can use our own
importing scripts:

cat /etc/passwd | U

awk '{split($1,i,":");U
print "stadrin -au "i[1];U
print "stadrin -m "i[1]}" U

SPWD"' | bash -i

Now we have finished the tasks regard-
ing the user definition process. The next
step involves importing the token defini-
tions and their assignments to specific
users. The tokens comes with digitally
signed and encrypted data files contain-
ing specific token information. For each
token we have a unique definition file
and activation key. The typical importa-
tion of the tokens is usually done in a
single pass with an immediate assign-
ment to the selected user, as shown in
Listing 3.

Finally, we have to change the authen-
tication scheme for the users with
assigned tokens to a Response Only or
Challenge Response mode from the
default SPWD scheme:

stadrin -m pandoruser RO|CR

It is also possible to assign one token to a
specific group of users with a single defi-
nitions using:

stadrin -st useraccount U

tokendefinition

After finishing the assignment proce-
dure, with a view to making the
authentication scheme complete, we
have to test it’s function on any available
service such as login. The challenge
response mode using the login service
appears as follows:

killer login: pandoruser
Challenge is 0495
Enter your response:
Last login.....
killer$

Conclusion
From am enterprise point of view,
Stadrin is an effective tool for raising the
security and safety level of existing
systems, especially where the static pass-
words authentication systems are no
longer sufficient. Authentication
schemes of this type are most commonly
used by banks and insurance companies
for securing access to electronic funds.

As Stadrin becomes more widespread,
we will face OTP authentication systems
more often and in more diverse places.
We will certainly find it in system and
application environments. Although
systems like this have been mainly used
in a very secure environments in the
past, this is bound to change.

With its low cost, (Stadrin starts in the
range of EUR 100–156 for single user –
including the token) it is possible to
implement this higher level of security in
more standard computing environments,
so preventing any unauthorised accesses
and violations. A special discount of 25
per cent is available for all the Linux
Magazine readers running for a one
month period.

As we are all aware, most unautho-
rised system access is made from within
a company, dynamic passwords are the
best way to protect the services, for
through-internet access as well as the
local ones. For this reason you should
consider changing before you find out
the hard way, that your static passwords
are no longer secure. ■

71www.linux-magazine.com March 2003

PROGRAMMINGStadrin

stadrin -a pandoruser ./pandortoken.dpx
Enter your ini-key, please: U

111111111111111111111111111111110097123456 0097123456
Added APPL 1
Added APPL 2
Added APPL 3

Listing 3: Importing token data

Figure 4: Message Authentication Code Authentication schemeFigure 3: Challenge Response Authentication scheme

