
Even though some projects are
probably of primary interest to
developers, we still hope that less

technical readers will also be able to
draw new perspectives and be inspired
by the projects shown here.

Twin
The first topic this month is Twin, [5] 
a multi-window, multi-application text-
based environment by Massimiliano
Ghilardi. Consequently, Twin is an
acronym for “Text WINdows” or 
(even better) “a textmode window
environment.”

The project aims at people who seek 
to have an environment with several
windows without needing or wanting all
the features of X11 – especially its signifi-
cant resource hunger.

Combining Twin with Links, a text-
mode web browser, only requires about
5% of the resources compared to X11
with the graphical browser Konqueror.
All applications that can be used on a
console or in a terminal window can also
be used under Twin.

In a time where graphic cards are
trying to outrace each other with new
features and where what was impossible
to afford yesterday is available for pocket
change the day after, this seems almost
anachronistic. But as already explained

for the RULE project in the last issue, [6]
this is only true for a small part of
mankind.

There is a group that profits from
Twin, that is normally not the focus
when thinking about new software:
blind and visually impaired people. As
they may depend on using Braille termi-
nals, they have little use for graphical
user interfaces.

With Twin, they can now also use a
full environment with multiple windows
and applications.

Technically speaking, the project con-
sists of a server, called “twin” like the
whole project. This accepts connections
from the clients and creates or modifies
windows according to their commands.
Also the server dynamically manages the
different displays and devices.

Twin currently handles the console
with mouse support via gpm and every
termcap or ncurses compatible terminal
with mouse support through the “xterm”
mouse protocol, if available. But it is also
possible to use X11 by means of a simple
X11 driver or the graphically enhanced

gfx-driver for
output as well 
as another Twin
server on another
machine.

The General
Graphics Interface
(GGI) is also
supported, but
since it still lacks
keyboard support,
this most probably
makes it rather
unsuitable for
most applications.

Among the
other components
are the libraries

libTw, which handles the communi-
cation with the server, as well as libTT,
which as the toolkit library provides an
abstraction from of the more graphically
oriented server-side functions to the
more window/object oriented functions
clients prefer. The third library is libTutf,
a Unicode library, which allows trans-
ferring text from and to unicode. This
library will probably become obsolete by
using standard libraries some time in the
future when the final open issues have
been addressed.

Finally there are the clients. Currently
there are only a few of them, of which
two are built into the server. Both the
window manager, which can be con-
figured through a “~/.twinrc” con-
figuration file, and a terminal emulating
the console have been integrated into the
server for technical reasons.

Other clients are an additional termi-
nal emulator (twterm), a login manager
similar to xdm/gdm/kdm (twdm), a
system monitor (twsysmon), utilities to
(de-)register displays with the server as
well as other smaller clients that are
more suited for testing than real work.

The project has been written entirely
in C, one of the reasons for its small
memory footprint – a Twin server
usually requires less memory than the
Bash shell. And of course Twin is Free
Software – its licenses are the GNU
General Public License (GPL) for server
and clients and the GNU Lesser General
Public License (LGPL) for the libraries.

Further development is pursued by
Massimiliano in his free time, and he 
still has a lot of ideas. First he’d like 
to complete the toolkit library and its
documentation, then more editors, task
bars, file managers, web browsers, email
programs and TTY based programs
should be expanded to use it.

Welcome to another issue of the Brave GNU World,

which will be a little more technical this month.

BY GEORG C. F. GREVE

The monthly GNU column

Brave GNU World

91www.linux-magazine.com April 2003

COMMUNITYBrave GNU World

Figure 1: Twin showing off some graphical features in text



be used to generate routines that allow
dissecting a source input into single
expressions, because it automates gener-
ation of source code for pattern
matching. 

Yacc/Lex--
Both Bison [8] and Flex [9] usually
create C source code. Is this code used in
C++, they tend to clutter the global
namespace; also there are no C++ inter-
faces available. For this reason Christian
Holm Christiansen has written a group
of header files called Yacc/Lexx--, which
allow encapsulating the C output of
Bison and Flex in C++ classes. The
changes to the parser/scanner specifi-
cations were deliberately kept at a
minimum to allow for greatest possible
flexibility.

In fact Flex itself provides capabilities
to generate C++ sourcecode, but the
output was too inflexible for Christian’s
liking and also it didn’t fit well with the
parser classes generated by Bison. There-
fore he wanted a common encapsulation
for both. 

Compared to projects like bison++,
which has the advantage of direct C++
output, Christian sees the advantages of
his method in being independent from
the internals of the employed Yacc/Lex
implementation. Therefore it is more
stable with respect to changes in the
Yacc/Lex projects and not immediately
affected by their internal modifications.

But there are also some Yacc/Lex
clones displaying odd behaviour and are
not POSIX compliant; these can be prob-
lematic to use, which is a special

problem of this
project.

Christian plans
to test more
Yacc/Lex imple-
mentations and
would be happy to
receive help in
this area.

Readline--
The GNU Readline
Library [11] pro-
vides functions
that allow inte-
grating a versatile
commandline into
other projects.

Among the features of GNU Readline
are a vi and EMACS mode, it can save
old input, recreate it and allow editing it
again or also complete the beginnings of
previously entered commands similar to
the csh shell.

The Readline-- project by Christian
Holm Christensen allows C++ program-
mers to access the GNU Readline Library
by means of C++ classes. Not surpris-
ingly, C++ developers seeking to include
a commandline interface in their applica-
tions are the main target group of this
project.

The program originated when
Christian himself needed a commandline
interface to test his C++ parser, a 
task during which he also created the
previous project.

The largest problem is that the library
is not yet thread-safe, so it should be
handled with care in complex appli-
cations. Fixing this and improving the
interface are Christian’s next plans for
the project, because even though the
interface is complete, he considers it
unintuitive in some places.

Option--
With Option--, Christian provides a C++
parser for commandline options; a
library that allows C++ programs to find
and evaluate commandline options
passed at program start.

The major advantage of the project
compared with similar projects is that
possible options are represented by tem-
plate-classes, which makes the project
very flexible. Option-- only works for
non-positional arguments, though. So if
the user needs to be forced by syntax to
only use a certain option at a certain
position in the commandline, Option-- is
not a good choice.

Thread--
The last project by Christian Holm
Christensen in this issue is Thread--, a
project to use Threads in C++ programs.

Essentially, all computers work linear.
If they get a task, they will complete it
step by step in the given order with all
their capacity. In most cases, this would
only allow running one program at a
time, however.

In order to allow working on several
programs simultaneously - the so-called
“multi-tasking” - the executing kernel of

C++ Packages
The column continues with some
projects that should make the life of
C++ developers more easy and were all
released by Christian Holm around
December 1st 2002. [7]

When people communicate with
computers, they need to agree upon a
common language to be used in
communication. Especially when this
communication does not happen in real
time or is very complex. That is for
instance the case with programming
languages or configuration files.

The basic problem is that functions for
syntax checking and reading or evaluat-
ing of such languages can easily become
very complex. When changes of defini-
tion or grammar become necessary, this
often results in a very time consuming
search for bugs.

For this reason, tools have been
created that can automate the translation
of definitions of grammar into functions
that can read that grammar. Of course
this means that the definition of gram-
mar itself needs to be machine readable.
The probably most common form of
such a definition is the “Lookahead Left
to Right Parsing” (LALR) context-free
grammar.

One of the best and most-popular
LALR(1) parser is Bison, [8] the Yacc
equivalent of the GNU Project. Yacc itself
stands for “Yet Another Compiler-Com-
piler” and Bison has deliberately been
kept compatible to Yacc in order to ease
transition from Yacc to Bison.

An application often working hand in
hand with Bison is Flex, [9] which can

92 April 2003 www.linux-magazine.com

Brave GNU WorldCOMMUNITY

Figure 2: Christians website showing his range of programs



the computer, the processor, jumps from
task to task. Each of these tasks in turn 
is again worked on in a strictly linear
fashion, but the method allows split-
ting the computers capacity between
programs.

As the programs and their tasks
become more complex, working only
strictly linear within a program is
increasingly unsatisfactory. A solution to
this problem is threading. Threads allow
splitting programs into different “task
threads” that again can be worked on
linearly to solve different subunits of the
complex problem.

The interaction and communication
between these different threads of course
also needs to be co-ordinated and con-
trolled, a functionality which can be
accessed by means of Thread-- from
C++.

Different from similar projects like
Boost::Thread, ZThread or Common
C++, Thread-- does not distribute pre-
processor macros throughout the source
code. Implementation specific parts are
instead put into Traits. This makes the
library quite small and extensible.

Christian originally began working on
Thread-- in order to test the thread-safety
of Readline-- and according to him it
works fine on GNU/Linux, but GCC

versions of 2.95.x and below are prob-
lematic, so it is advisable to check for the
GCC version.

The other problems are semaphores
under Solaris and Threads under Win32;
he could not test it on other platforms.
Help with these problems as well as
information about other platforms is
very welcome.

TUX&GNU@school
Towards the end of this issue it is my
pleasure to point readers to another
remarkable column. Mario Fux, himself
a long-time reader of the Brave GNU
World, began last year to write a similar
column dedicated specifically to Free
Software in school.

By now he has finished 5 issues of the
“TUX&GNU@school” column, which
has found its new home on the FSF
Europe home page. [17] I wish Mario, as
well as Christian Selig and Kristian Rink,
who support him as a kind of editorial
board, all the best for the future.

6th EC Framework
Programme
As mentioned [12], the FSF Europe [13]
wrote a recommendation [14] to the
European Commission on April 30th,
2002. The recommendation, first of 

all explained the
advantages of Free
Software for the
region Europe and
European coun-
tries in order to
then suggest giv-
ing Free Software
priority status.

On December
17th 2002 the 6th
Framework Pro-
gramme was
finalized and it
seems that the rec-
ommendation to
make Free Soft-
ware the preferred
form for project
proposals has
been heard. This
effectively means
that the whole
budget of the IST
Work Programme,
containing 1725

million Euro, has been opened for Free
Software. This is most likely the largest
sum that was ever available for Free
Software funding.

In order to now support companies,
universities and research centers to
launch projects for and with Free
Software within this framework, the FSF
Europe sent out a request [16] in which
it asks all parties to get in touch.

Until next month
Enough Brave GNU World for this
month, as usual I’d like to ask for ques-
tions, ideas and comments by mail. [1]

So much for now, until next month. ■

93www.linux-magazine.com April 2003

COMMUNITYBrave GNU World

Figure 3: The latest version of TUX&GNU@School column

[1] Send ideas, comments and questions to
Brave GNU World:
column@brave-gnu-world.org

[2] Home page of the GNU Project:
http://www.gnu.org/

[3] Home page of Georg’s Brave GNU World:
http://brave-gnu-world.org

[4] “We run GNU”initiative:
http://www.gnu.org/brave-gnu-world/
rungnu/rungnu.en.html

[5] Twin home page:
http://linuz.sns.it/~max/twin/

[6] Brave GNU World, Issue #46: http://
brave-gnu-world.org/issue-46.en.html

[7] C++ Packages:
http://cholm.home.cern.ch/cholm/misc

[8] Bison home page:
http://www.gnu.org/software/bison/

[9] Flex home page:
http://www.gnu.org/software/flex/

[10]The Lex & Yacc page:
http://dinosaur.compilertools.net

[11] GNU Readline library: http://cnswww.cns.
cwru.edu/php/chet/readline/rltop.html

[12] Brave GNU World, Issue #40: http://
brave-gnu-world.org/issue-40.en.html

[13] Free Software Foundation Europe:
http://fsfeurope.org

[14] Recommendation by the FSF Europe for
the 6th FP: http://fsfeurope.org/
documents/fp6/recommendation.html

[15] 6th Framework Programme:
http://www.cordis.lu/fp6/

[16]Call for participation of the FSF Europe:
http://mailman.fsfeurope.org/pipermail/
press-release/2002q4/000047.html

[17] TUX&GNU@school column:
http://fsfeurope.org/education/tgs/

INFO


