
create a list of the required objects
and their characteristics. A group node is
needed for each geometrical type;
the required transformations (such as
rotation or scaling) are added first,
followed by the material attributes
(such as the color) and finally by

the actual geometry.
This order is im-
portant as Open
Inventor uses Open-
GL for rendering.

When subdividing
the scene, you
should attempt to re-
use as many objects
as possible, as this
approach saves code
and is easier to keep
track of. One possi-
ble approach would
be to write functions
that use a pointer to
return smaller scene
graphs or groups.
This would allow

more convenient integration of available
components into scene graphs.

Programmers tend to swap out code
recurring segments to libraries, graphics
programming is no exception. Libraries
can be used to integrate pre-defined
descriptions for recurring, complex
objects, the most common variant being
three dimensional scenes, described by
scene graphs of their own, and 2D
images (also referred to as textures in
this context). The latter are applied to
the surfaces of other objects.

Textures
Textures are designed to make other
objects appear more realistic. Open
Inventor offers two flavors: textures that
are described by a matrix stored in mem-
ory, or as a two dimensional file based
image. The former approach is extremely
time-consuming and normally unneces-
sary. In order to load a texture from a
file, the program first creates an object of
the “SoTexture2” class, which is then
passed the name of the image file:

3D objects do not really look realis-
tic, until you apply a texture to
them. Coin and C++ (see the

“Review” box) provide you with simple
means to use this approach, and this
does not involve tedious manual pro-
gramming of objects. Open Inventor, and
thus Coin, can integrate VRML 1.0 files
for which tried and trusted graphic mod-
eling tools are available. Animation
allows the scenes you develop really
come to life.

The scene graph is the common
denominator that connects the various
elements of a 3D worlds. It is a classic
case of “divide and conquer”, a complex
scene is far easier to program when
divided into smaller parts. Before pro-
gramming a scene it is advisable to

Coin and a few lines of C++ will allow

you to implement even the most

ambitions ideas, creating and ani-

mated 3D world from a few simple

objects with textures and complex

VRML models. BY STEPHAN SIEMEN

Interactive 3D Worlds with Coin and Qt

Moving Objects

72 April 2003 www.linux-magazine.com

Coin 3D – texturesPROGRAMMING

01 SoSeparator* drawEarth()
02 {
03 // Objects for group nodes and texture
04 SoSeparator *earth = new SoSeparator;
05 SoTexture2 *texture_earth = new SoTexture2;
06
07 // Name of texture file
08 texture_earth->filename = "worldmap.rgb";
09
10 // Add texture to group node
11 earth->addChild(texture_earth);
12
13 // Add sphere to group node
14 // => Draw texture on surface of sphere
15 earth->addChild(new SoSphere);
16
17 return earth;
18 }

Listing 1: Drawing the Earth

Figure 1: The earth in 3D. A sphere and a suitable surface texture are all you need for this graphic

SoTexture2 *texture = U
new SoTexture2;
texture->filename.setValueU
("texture.rgb");

The texture object must be inserted into
the scene graph before the object that it
is applied to. Open Inventor provides
two ways of applying textures to objects:
it can either apply a single (default) or
multiple instances of texture to an
object. Coin uses the “simage” library
[5] to load textures and supports the
following formats: JPEG (“.jpg”), GIF
(“.gif”), Targa (“.tga”), PIC (“.pic”), SGI
RGB (“.rgb”, “.bw”) and XWD (“.xwd”).

Listing 1 shows some code that applies
a world map to a sphere. The code is
implemented as a function that returns a
pointer of the “SoSeparator” type. The
group node contains a texture called
“SoTexture2”, and a sphere, “SoSphere”.
The file “worldmap.rgb” is available
from [8]; and was originally an Inventor
Mentor sample file.

Figure 1 shows the results of running
the function within the context of a
scene graph and rendered by
“SoQtExaminer”.

External Geometries
As previously mentioned, multiple
instances of an object with various sizes
and aspects can appear at multiple
positions within a scene graph. As Open
Inventor describes the shape indepen-

dently of the position, orientation and
aspects (such as color), programmers
can re-use an object arbitrarily.

As the example with the chair in part
one [1] showed, the objects only need
to be defined once. A large amount of
code is required to describe an object’s
geometry, particularly in the case of
more complex objects. To keep large-
scale projects simpler, it normally makes
sense to store complex objects in sepa-
rate files.

Open Inventor uses a special file
format for this purpose, just like VRML.
The file suffix is “.iv”, and the content
can be either ASCII or binary. It is
normally preferable to store smaller
scenes in (readable) ASCII format.
Larger scenes should be stored in binary
format to save space and allow Coin to
load them more quickly.

The “loadGeometry()” function de-
scribed in Listing 2 returns a pointer to a
a scene graph stored in a file. The func-
tion contains several error handling
routines to ensure that only valid scenes
will load.

Some more sample Open Inventor files
are available from [8], such as
“boeing767.iv” that describes the
geometry of a Boeing 767 jet. Figure 2
shows the scene in “SoQtExaminer”. A
quick look at the ASCII text version soon
shows how complex the scene
description is.

In graphical programming, modeling
tools are normally used to develop com-
plex objects (such as figures and
vehicles). The designer can then export
the objects to the required file format
(Open Inventor “.iv” or VRML “.wrl”),
and Coin loads the files at runtime. Lots

73www.linux-magazine.com April 2003

PROGRAMMINGCoin 3D – textures

The first part of our mini-series on Coin [1]
described how three dimensional graphics
are produced in C++ using Coin and SoQt .
Coin [2] is a free clone of Open Inventor (SGI
[3] and TGS [4]), which is based on OpenGL.
The examples in this and the previous arti-
cle do not contain Coin specific code.Thus,
the programs should run with any Open
Inventor version and any clone, with the
possible exception of the window system
binding: Qt is used in place of Motif here.
One advantage of Open Inventor in compar-
ison with OpenGL is the fact that the former
uses scene graphs to describe 3D scenes.The
scene graph is a tree structure, where nodes
are used to store 3D elements.The position
in the graph defines where and how will
Coin displays a node.This allows you to store
a scene or part of it, and program its
behavior (interaction and animation).

Review

01 SoSeparator* loadGeometry(const char *filename)
02 {
03 // Root of scene graph
04 SoSeparator *file_scene = new SoSeparator;
05
06 // Handler for Open Inventor file
07 SoInput myScene;
08
09 // Open scene file
10 if (!myScene.openFile(filename))
11 {
12 printf("Error loading file '%s'\n", filename);
13 return NULL;
14 }
15
16 // Is the file format valid?
17 if (!myScene.isValidFile())
18 {
19 printf("File '%s' is not a valid Inventor file\n", filename);
20 return NULL;
21 }
22
23 // Read scene and add to group node 'file_scene'
24 file_scene = SoDB::readAll(&myScene);
25
26 if (file_scene == NULL)
27 {
28 printf("Error reading file '%s'\n", filename);
29 myScene.closeFile();
30 return NULL;
31 }
32
33 // Close file
34 myScene.closeFile();
35
36 return file_scene;
37 }

Listing 2: Loading Geometry from a File

74 April 2003 www.linux-magazine.com

Coin 3D – texturesPROGRAMMING

01 #include <Inventor/Qt/SoQt.h>
02 #include

<Inventor/Qt/viewers/SoQtExaminerViewer.h>
03 #include <Inventor/SoInput.h>
04 #include <Inventor/nodes/SoSeparator.h>
05 #include <Inventor/nodes/SoSpotLight.h>
06 #include <Inventor/nodes/SoScale.h>
07 #include <Inventor/nodes/SoTexture2.h>
08 #include <Inventor/nodes/SoTranslation.h>
09 #include <Inventor/nodes/SoRotationXYZ.h>
10 #include <Inventor/nodes/SoSphere.h>
11 #include <Inventor/engines/SoTimeCounter.h>
12 #include <Inventor/engines/SoCalculator.h>
13
14 // Insert Code for Listing 1 and 2 here
15
16 int main(int argc, char ** argv)
17 {
18 // Initialize SoQt (creates a Qt window)
19 QWidget *window = SoQt::init("main");
20
21 // Create scene graph
22 SoSeparator *root = new SoSeparator;
23 root->ref();
24
25 // Spotlight scene: also creates shadow
26 SoSpotLight *light = new SoSpotLight;
27 light->location.setValue(0,0,2);
28 light->direction.setValue(0,0,-1);
29 light->cutOffAngle = 1.5;
30 root->addChild(light);
31
32 // Group node for rotating earth
33 SoSeparator *earth = new SoSeparator;
34
35 // Set rotation node
36 SoRotationXYZ *earthrotation = new

SoRotationXYZ;
37 earthrotation->axis.setValue("Y");
38 earth->addChild(earthrotation);
39
40 // Add earth to scene
41 earth->addChild(drawEarth());
42
43 // Set Counter
44 SoTimeCounter *counter = new SoTimeCounter;
45 counter->max=360;
46 counter->step=1;
47 counter->frequency=0.03;
48
49 // Convert values: Degrees -> Rad
50 SoCalculator *converter = new SoCalculator;

51 converter->a.connectFrom(&counter->output);
52 converter->expression.set1ValueU

(0,"oa=a/(2*M_PI)");
53
54 // Connect counter to earth rotation node
55 earthrotation->angle.connectFrom(&converter-

>oa);
56
57 // Add earth group node
58 root->addChild(earth);
59
60 // Create group node for plane
61 SoSeparator *plane = new SoSeparator;
62
63 // Move plane from center of scene
64 SoTranslation *altitude = new SoTranslation;
65 altitude->translation.setValue(0,0,1.2);
66 plane->addChild(altitude);
67
68 // Scale plane down and turn through 90
69 SoScale *scale = new SoScale;
70 scale->scaleFactor.setValueU

(0.0025,0.0025,0.0025);
71 plane->addChild(scale);
72 SoRotationXYZ *course = new SoRotationXYZ;
73 course->axis.setValue("Y");
74 course->angle = 1.5707963;
75 plane->addChild(course);
76
77 // Read plane geometry from file
78 plane->addChild(loadGeometry("boeing767.iv"));
79
80 // Add plane to scene
81 root->addChild(plane);
82
83 // Create viewer
84 SoQtExaminerViewer *b = new

SoQtExaminerViewer(window);
85 b->setSceneGraph(root);
86 b->setHeadlight(FALSE);
87 b->show();
88
89 // Show windows and wait for "Exit"
90 SoQt::show(window);
91 SoQt::mainLoop();
92
93 // Delete viewer and scene reference
94 delete b;
95 root->unref();
96
97 return 0;
98 }

Listing 3: Earth Rotation

76 April 2003 www.linux-magazine.com

Coin 3D – texturesPROGRAMMING

contain objects that Open Inventor does
not understand. Version 2.0 of Coin,
which is currently planned, will provide
support for newer VRML versions how-
ever. If your modeling software does not
support VRML or Open Inventor, you
might like to try a 3D file converter, such
as 3dc [6], or see [7] for further tools.

Animations
So far we have only discussed static
objects, although users could view the
scenes from several sides as the pro-
grams used the “SoQtExaminerViewer”
class. Open Inventor also provides scene
animation classes. There are two steps
required. The first is to program an
object that triggers changes in the ani-
mation – this is also referred to as an
engine. There are two basic groups of
engines: counters and computers. The
second step involves assigning the out-
put from the engine to an object attribute
in a scene graph, allowing the attribute
to react to that output.

To allow the globe in Figure 1 to rotate
about its own axis, you first add a
“SoRotationXYZ” class object to the
graph, ensuring that it occurs at a posi-
tion before the globe. The class has two
fields: a rotational axis (axis) and an
angle of rotation (angle). The rotational
characteristics will produce the desired
animation when linked to an engine.

Listing 3 creates a node group that will
draw a rotating globe when called by the
“drawEarth()” function in Listing 1.
A “SoTimerCounter” class engine creates
the required angles. However, Open
Inventor expects angles as radials (and
thus as floating point values), and

“SoTimerCounter” supplies integers.
“SoCalculator” takes care of converting
integers to radials, using common arith-
metic expressions to reformat the input
values.

Take off
To complete the example, we added the
plane shown in Figure 2 to the scene.
Figure 3 shows the results, and Figure 4
the scene graph used to create them. The
scene graph does not contain aspect or
geometry descriptions, as they are either
stored in an external file (and loaded by
a call to “loadGeometry()”), or described
by a function (“drawEarth()” in this
case). The nodes used here contain
groups and transformations.

Open Inventor offers a whole range of
additional features, providing scope to
define animations that use other engine
types. The online documentation for
Coin [2] provides detailed descriptions of
all these engines, indicating their effect
and potential. ■

of modeling tools are available and some
of them are free for private use. They
normally support multiple file formats.

VRML
Not all modeling programs can export 3D
objects to the Open Inventor file format,
although most tools will understand the
common VRML format (Virtual Reality
Modeling Language) that Open Inventor
is based on. As you can imagine, it is
quite simple to convert VRML files to
Open Inventor files. To convert a VRML
1.0 ASCII format file to Open Inventor
format, you simply edit the first line:

#VRML V1.0 ascii

The same line would read as follows in
Open Inventor:

#Inventor V2.0 ascii

VRML 1.0 and Open Inventor tags are
identical, although later VRML versions

[1] Stephan Siemen,“Virtual Worlds : Linux
Magazine Issue 28, p72

[2] Coin: http://www.coin3d.org
[3] Open Source Variant of Open Inventor:

http://oss.sgi.com/projects/inventor/
[4] TGS: http://www.tgs.com
[5] Simage library:

ftp://ftp.coin3d.org/pub/coin/src/
[6] 3dc, a 3D converter:

http://www.on-the-web.ch/3dc/
[7] Additional information:

http://prswww.essex.ac.uk/stephan/3D/
[8] Files for this article:

ftp://ftp.linux-magazin.de/pub/listings/
magazin/2003/03/3d/

INFO

Figure 2: The plane model is described in a text
file which is loaded by a Coin program and inte-
grated into the scene graph

Figure 3: A plane flying around the rotating earth
in 3D. It’s simple to program this animation with
Coin

Figure 4: The scene graph for this example contains the earth and the plane as group objects. The
counter ensures that the earth will rotate about its own axis

transformation

root

drawEarth()

sc
ale

co
urs

e
alt

itu
de

loa
dG

eo
metr

y

earth plane

earthrotation

convertercounter

engineseperator assigned scene graph

light

