
it from later. To do so, the OS tells the
drive the required position; the drive
then moves the head to the right position
and either reads or writes data.

The smallest addressable unit is a
sector, which has a capacity of 512 bytes.
A track comprises of multiple sectors.
Tracks form concentric circles on 
the surface of a disk and are organized
around the hub of the disk (see 
Figure 1).

The number of tracks and sectors
depend on the density of the of the area
to which we are going to write to. The
more tightly you can store bits, the
smaller the gap between tracks and
sectors, so there will be more of them. A
hard disk’s capacity is a function of these
aspects. Track 0 is the outside track and
numbers increase towards the center 

of the disk. Tracks with the same
number are assigned to cylinders. The
capacity of a disk is thus the result of
multiplying the number of heads, by the
number of tracks or cylinders, by the
number of sectors per track and finally
by the sector size.

When the Linux kernel is executed, 
it outputs details of the disks it has
recognized on the console. Linux also
indicates the disk geometry advertised
by the disk, and displays the number of
sectors and the total capacity derived
from these Figures (see Figure 2).

CHS is one possible addressing
scheme; the abbreviation is derived from
the first letters in “Cylinder Head Sector”.
To access a sector on a drive, the operat-
ing system calls interrupt 0x13
(hexadecimal 13, decimal 19) to pass a

From a purely physical viewpoint
hard disks are made up of rotating
disks and moving read/write

heads. The number of disks and
read/write heads depends on the
individual hard disk type. 

When a computer boots, the hard disk
is automatically started, and the drive
motor ensures that the disks rotate at
uniform speed. Older hard disks
typically run at 5,400 or 7,200 
revolutions per minute (rpm), newer
models run at speeds of 10,000 or even
15,000 rpm.

Read and write operations require the
read/write head to the correct position,
in a process known as a seek operation.
The noises that hard disks tend to make
are caused by two things; firstly by the
rotating disks and the drive motor that
powers them. This is a permanent back-
ground noise. If your hard disk is too
loud, you may be able to reduce its rota-
tional speed, thus making your drive
purr instead of whining.

The other source of noise is the
movement of the read/write heads or
more accurately their drive motors, and
this noise only occurs during hard disk
access.

Addressing
Two different schemes are used to
address the data on a hard disk. In order
to store data on the disks, the operating
system needs a means of describing
where to write the data, or where to read

Anybody making full use of an off-the-shelf computer will want to gain access to the hard disk. Very few users are aware

of how files are stored on a hard disk, or of the various options and with some fundamental knowledge, such access will

be worry free. BY MARTIN SCHULZE

How Hard Disks and Filesystems Work

Compress and Store

84 April 2003 www.linux-magazine.com

FilesystemsLINUX USER

Martin Schulze spends most of his
time developing, improving and
promoting free software, for
example, by organizing LinuxDays,
lectures, and workshops.You can con-
tact Martin at joey@infodrom.org.TH

E A
UT

HO
R



combination of the required head,
cylinder and sector to the BIOS (see
Table 1).

Size restrictions
Unfortunately, this scheme has a draw-
back. The number of bits available 
for representing the address in the
computer’s BIOS and in the interface
between the BIOS and the hard disk is
restricted. This in turn enforces restric-
tions on the maximum addressable disk
size and geometry.

The specification as shown in Table 2
applies to the interface between the
computer BIOS and the hard disk. It
allows a maximum addressable size of
65536 x 16 x 256 x 512 Byte = 128 GB.

This specification dates back to a time
when nobody could even imagine
having a disk of this capacity or even
using that amount of space. Of course,
this predates on-line file sharing and
digitized movies. Way back then nobody
could imagine a computer needing 1 GB
RAM and I can even remember someone
saying “640 KB should be enough for
anybody”. Western Digital recently
launched the WD2000 drive family with
a capacity of 200 GB, which is no longer
fully addressable using this scheme.

The problems do not stop there, as 
the conventional (and somewhat anti-
quated) PC BIOS is extremely miserly,
providing only 24 bits instead of 28 and

also re-arranging them (see Table 3). If
you are good at maths, you should
already have noticed that only 1024 x
256 x 63 x 512 bytes = 7.844 GB are
addressable.

As the smallest data field is significant
for all the others, this unfortunately
leaves you with the values as shown in
Table 4. 

So that leaves you with a mere 1024 x
16 x 63 x 512 bytes = 504 MB of
addressable space, and that is really not
a lot by modern standards.

A BIOS upgrade or the Ontrack Disk
Manager was required to use larger
disks. After upgrading to a BIOS capable
of translating the CHS values, the logical
geometry of large hard disks no longer
corresponds to the physical geometry.
The logical geometry is supplied by the
BIOS and automatically mapped to the
physical geometry when the disk is
accessed. At least this allowed users to

access the total disk space on
older modern drives.

The screenshot in Figure 2
shows that physical geometry of
the second IDE hard disk as
CHS= 119108/16/63, however, the
BIOS shows different values,
CHS= 7473/255/63, and this is
what the kernel will report, when
displaying the partition table a
few lines lower down.

LBA Addressing
As you can see, this addressing
scheme is stretched to its limits
by today’s hard disks. The solu-

tion is a completely different type of
addressing which was introduced in
1995 and is known as LBA. LBA is short
for “Logical Block Addressing” and num-
bers the sectors, or data blocks, on a
hard disk sequentially, starting with 0.

Initially, only 28 bits were available for
LBA; but this was a major improvement
on CHS addressing and supported disks
with up 128 GB. Today, 48 bits are avail-
able for addressing – assuming a block
size of 512 bytes, this would permit disks
with up to 131,072 terabytes. Post 2000
computers should actually have 64 bits
available for LBA addressing – again
assuming a block size of 512 bytes, this
would allow disks with up to
8,589,934,592 terabytes to be addressed.

Kernel Support for Multiple
Addressing Schemes
The kernel developers always attempt to
allow Linux to support as many systems

85www.linux-magazine.com April 2003

LINUX USERFilesystems

Cylinder Head Sector Sector size Capacity
5005 x 255 x 63 x 512 Bytes = 40 GB
119108 x 16 x 63 x 512 Bytes = 60 GB

Table 1: Calculating disk
capacity

Figure 1: Hard disk internals

View from overhead Side view

Track

Sector

Read/write head Read/write heads

Figure 2: Linux discovers three hard disks on booting



reduces the cache size should normal
programs require more memory.

Master Boot Record
The operating system will put some of
the sectors on a hard disk to a very
specific use. The first block on the hard
disk is reserved for metadata. On a PC
this block stores the computer’s boot
program, which is called by the BIOS
when the computer is powered on.

Linux either stores lilo or grub in the
MBR, the Master Boot Record. The boot
loader can then call other programs, such
as the Linux kernel, for example; the
position of the Linux kernel on the hard
disk is also stored in this hard disk sector.

The role of the Master Boot Record
doesn’t finish here though. The partition
table is also stored at the end of this
block and contains a description of the
logical hard disk structure from the
operating system’s viewpoint. Operating
systems tend not to use the hard disk as
a whole, but to divide the disk into 
so-called partitions (Figures 3 and 4).
The third component in the magic num-
ber 0xAA55, which informs the OS that
it really is an MBR.

Storing Information
After dealing with the technical details, a
further question arises: “how is infor-
mation stored on a hard disk?”. A
simplistic approach would be to write
any information that needs to be stored
on the disk sequentially in contiguous
blocks, as shown in Figure 4. The first

file occupies three blocks and is followed
by a file that occupies five. This used to
be followed by a file that occupied five
blocks, but was deleted later, and the
space is followed by a file that occupies
three blocks.

Although this approach seems quite
simple, it does have a major disadvan-
tage: the file names have not been
stored. Although a program could access
files one through four, it cannot map
them to an intuitive name, and although
a computer might be quite happy with a
setup of this kind, humans tend to prefer
descriptive file names with symbolic
names such as /bin/bash or /usr/bin/
emacs.

Having said that, a variant of this
scheme is still in use today. If you ever
had the pleasure of writing to a floppy
disk on an older Unix system, you will
be familiar with commands such as the
following:

tar cf /dev/fd0 directory/

The files in the directory supplied as a
parameter are compressed by tar and
then written block by block to the disk.
The command was simply reversed, to
read the same data:

tar xf /dev/fd0

This approach may allow you to place an
archive on a floppy and restrict access to
the tar program, but floppies are slow
and provide limited storage capacity, 

as possible. This is why the Linux kernel
supports multiple addressing schemes.
48 bit LBA has the highest priority. If the
hardware or the BIOS does not support
this scheme, the IDE driver uses 28 bit
LBA, defaulting to 28 bit CHS addressing
only if this fails.

Incidentally, this problem only
concerns IDE drives. SCSI drives, which
are typically used for server systems and
professional (Unix) workstations, are not
affected. Server drives generally need
more capacity, as they are typically
required to store more data than a simple
IDE drive sitting in someone’s home PC.
This is why SCSI drives traditionally use
LBA as their block addressing scheme.

Reading from a Hard Disk
The whole hard disk is divided into data
blocks of 512 bytes each. Thus each read
or write operation will apply to a
multiple of 512 bytes. In other words,
hard disk access always occurs for
blocks with a fixed length. Incidentally,
the same principle also applies to CD
ROMs.

Under the LBA addressing scheme
when a hard disk is told to read a sector,
the hard disk controller first needs to
translate the sector number to the
appropriated cylinder/head/sector. CHS
addressing supplies these values directly
as part of the request. The read/write
head is then moved to the required
position and reads the bits while the sur-
face of the disk rotates past the head.

After buffering the data temporarily,
the hard disk controller issues an inter-
rupt to let the operating system know
that it has successfully read some
information, returning the storage posi-
tion in this case, or that it has complied
with a write request. The operating sys-
tem can now go on to process the
information.

To enhance access speeds, particularly
if the same sectors are re-read, the kernel
can implement a block cache. Linux uses
excess memory for this purpose and

86 April 2003 www.linux-magazine.com

FilesystemsLINUX USER

Figure 3: The Master Boot Record (MBR)

Boot program

Partition table

Magic Number

0 (0x0000)

446 (0x01BE)

510 (0x01FE)

Figure 4: Contiguous data storage

MBR

Number Available
16 Bits for cylinders (0..65535)
4 Bits for heads (0..15)
8 Bits for sectors (0..255)

Table 2: Bits between 
BIOS and IDE interface

Bits Available
10 Bits for cylinders (0..1023)
4 Bits for heads (0..15)
6 Bits for sectors (0..62) (max. 63 sectors)

Table 4: Total bits for 
IDE addressing

Bits Available
10 Bits for cylinders (0..1023)
8 Bits for heads (0..255)
6 Bits for sectors (0..62) (max. 63 sectors)

Table 3: IDE address bits 
in the BIOS



so you can probably live with the
restrictions. Random access to arbitrary
files, allowing you to manipulate, delete
and create files at any time is simply not
possible using this approach.

Today the DOS filesystem and the M
tools are typically used for floppies,
although tape drives will still tend to
write raw data, just like floppies used to.
In this case, the filenames are kept, as
tar places them in the code it stores, and
they are available after reading the
archive.

The Filesystem
Obviously, simplistic contiguous storage
is not sufficient to permit names and
attributes to be stored along with the file
data, particularly if random access to
arbitrary data or files is required.

Instead, a uniform structure is
required to accommodate the files (and
directories) in the storage space (nor-
mally a partition). This structure is
typically referred to as a filesystem.

The mount command is used to attach
filesystems to a running system. This is
normally taken care of automatically on
booting a computer. Some manual
editing is required after adding a new
drive or partition. The system configura-

tion file for filesys-
tems to be mounted
at start-up is called
/etc/ fstab.

This is a major
asset of Linux and
similar systems.
Instead of using
drive letters that
change when a
partition is added or
removed, filesys-
tems are simply

added to the tree below / (root).
Even if the hard disk label changes at a

later date, or if you add an additional
hard disk, this will not affect the logical
position in the filesystem tree, as the IDs
reflect the IDE or SCSI channel. There is
no need to reconfigured applications or
paths, instead you
simply edit the config-
uration file, /etc/fstab.

Smaller systems
commonly provide a
single root filesytem, /.
Larger systems might
additionally place /var,
/usr, and /home on
partitions of their own,
to provide more space
and independence.

Inodes
The Linux kernel auto-
matically places files
on the correct file sys-
tem, or reads them
from it, by reference to
the path name and the
mounted file system.
To do so, a kernel
mechanism parses the
path name and dis-

covers the filesystem that stores the file.
On Unix oriented filesystems every file
(and every directory, being a special type
of file) is mapped to an inode. Inodes
map directory entries to data blocks on a
partition. Inodes themselves are special
data blocks that store metadata for the
files they point to. You can envisage
them as a kind of data structure that
stores additional information for a file,
such as its length, access permissions,
ownership, access times, and pointers to
the blocks in use. Inodes are normally
used by the internal filesystem only.

Users can also find out which inode
belongs to which file. The ls -i command
(see Figure 6) shows both the filename
and the inode it uses. Thus, the number
of files and directories on a file system is
not only restricted by the size of the files

and the total capacity of
the partition, but also by
the number of inodes –
this is a point to watch out
for, when setting up a
system.

The general structure of
an inode is shown in
Figure 6. The actual struc-
ture will depend on the
basic filesystem. The struc-
ture used by the Second
Extended Filesystem, the
Linux standard, is
described in the ext2_fs.h
kernel file.

The Linux filesystem
provides access to a variety
of information that users
will be confronted with in
various forms. Whether on
the command line or in 
the kernel – the filesystem
is literally ubiquitous. ■

LINUX USERFilesystems

Figure 5: Configuring the filesystem on two computers

Figure 6: General structure of an
inode

UID

GID

Mode

Size

atime

ctime

mtime

llinks_count

blocks_count

block1

block2

block3

...

More information at:
www.linux-magazine.com/Backissues

SELLING
OUT FAST!


