Source Code Navigation

Finding your way

hile high level approaches
such as class hierarchy dia-
grams or comprehensive

documentation can help to cut down on
the time spent searching source files, a
more important factor is the effort of
context switching.

When you are already in your editor
writing code, you should not have to
break the flow and leave it to look up a
method or function.

While most good editors will let
you shell out and run a grep or a find
command over the file system, we are
going to explore a tool that is more
integrated with our editor, assuming you
use one that is listed at http://ctags.
sourceforge.net/tools.html, which inclu-
des both Emacs and Vim.

This tool, called ctags, builds up a tag
(or index) file of language objects that
can be reached from the comfort of your
editor with no more effort than a couple
of keystrokes.

As a projects code-base grows in size to the point where it gets too complex

for a developer to hold in memory, easy navigation becomes increasingly

important. BY DEAN WILSON

As of version 5.4 ctags is aware of 28
different languages. So while we use
code samples written in Java, the same
principles can be applied to your own
project no matter which language it is in.
The exact objects available varies for
each language, typically these include
equivalents to classes, methods, func-
tions and packages.

Getting Ctags
Ctags is available from http://ctags.
sourceforge.net/ under the GPL and
follows the standard install process (see
Listing 1).

Once you have compiled and installed
the application, you can run the com-
mand ctags --version to ensure that it has

m April 2003 www.linux-magazine.com

installed correctly, followed by the com-
mand ctags -V. This second command
will display a list of file extension to lan-
guage mappings and any configuration
files ctags has found and will use when
run.

Due to Unix paying little heed to the
extension of a file, ctags runs through
a number of methods to detect which
language a source-file is written in:

e File extension (.pl, .java)

e Shebang line (If the file is executable)
If neither of these returns a language
ctags recognizes then the file will be
ignored. ctags behaviour as it runs
through a selection of files can be
viewed by running a ctags -V, it will
display the name of each file encoun-

Listing 1: Standard Install

where <version> is a string
such as 5.4

tar -zxvf ctags-<version>.tar.gz
cd ctags-<version>
./configure

#start the actual build
make

#this requires root privileges
make install

tered and either list the language
matched or show it as skipped. If you
have a number of script files without file
extensions then they are required to have
executable permissions set, otherwise
ctags will not parse the shebang line
(The first line of the script, #!/bin/perl is
an example of a shebang line.) This is
not documented in the man pages and
can cause some puzzlement when you
first begin using the tool.

Now we have installed ctags and have
some diagnostic capabilities under our
belt we can look at the benefits that the
tool provides. Shown in Listing 2 are two

Listing 2: Java source

//simple counter class, Tally.java
public class Tally {
int tally;

public Tally() f
tally = 0;

public Tally(int num) {
//start tally at 'num’
tally = num;

public void incrTally(int num) {
tally += num;

public void decrTally(int num) {
tally -= num;

small snippets of Java source
code, a class and an appli-
cation that uses it. While the
examples are simplistic and
very stripped down they will
serve to illustrate the princi-
ples of the tool.

The Tally.java class found
in Listing 2, should be fairly
self explanatory even to non-
Java coders, an instance of
this class serves as a counter
that can either be increased
or decreased and has multi- }
ple constructors, the first of }
which creates the instance

Tally delivered = new Tally();
Tally dispatched = new Tally(10);

delivered.incrTally(5);
delivered.incrTally(5);
dispatched.decrTally(5);

Listing 3: usetally.java

// usetally.java
public class usetally {
public static void main(String[] args) {

with a value of zero while
the second allows a starting value to be
defined.

The usetally.java source which is
shown in Listing 3, does very little, it
creates and then modifies two instances
of the Tally object before exiting silently.

If we now run ctags * in the directory
containing these two files a new file
called tags is created. If we open this file
in our editor we can then see how simple
the tag file format is.

We first have a number of comments
detailing the version of ctags being used,
these can be recognized by the ! at the
start of the line. Following these lines is

the actual information we are inter-
ested in (wrapped to fit, in the tag file
it is all one line):

incrTally Tally.java /» 2
public void incrTally(intnum)2
{($/;" m class:Tally

Working through the tab delimited
fields the first field is the name of the
object found, in this case its one of
our methods, incrTally.

The second field is the file name
the object was found in while the
third field is the regular expression
used by ctags to locate the object in
the file. The fourth field is a short
description of the objects type, possi-
ble values vary by language, in this
case an m in a Java file means a
method.

The full list of languages and the
objects supported under them is
available in the ctags manual at
sourceforge (http://ctags.sourceforge.

net/ctags.html)

Using ctags with Vim

Now we have a tag file let us begin navi-
gating by using it in conjunction with
vim (A short introduction to ctags and
Emacs can be found in the sidebar.) All
Java applications have a main() method
that serves as an entry point to the
program and is executed first. While we
only have two source files to worry
about unless you know which file this
method is in you may end up having to
search through both of them, using vim
we can pass the problem to ctags:

$ vim -t main

By default vim looks for a file called (not
surprisingly) tags for the tag definitions
it should be aware of. You may have in
the past invoked vim with either vim
+ 12 filename to go directly to line 12 of
filename or even a vim + /word filename
to jump directly to the first occurrence of
a word in the document, but in this case
you are telling vim which tagged object
you would like. Vim will then look-up
the name of the file containing the object
and the pattern that matches it from the
tag-file and with this information take
you to that object.

Now that we are in the usetally.java
file, if we find a method call we want to
investigate (such as decrTally) then we
can move directly to its definition by
entering :tag decrTally in Vim’s com-
mand mode.

To return to our starting position in the
usetally.java file you can enter Ctrl t and
we will be whisked back. If you move
through a chain of tags one after the
other you can use the command :tags to

www.linux-magazine.com April 2003 “

display the path you have taken. You can
navigate through this list using :[num]
tags to move forward the specified
number of tags and [num] Ctrl t to move
back. If you wish to jump back to the tag
at the top of the list you can use the
quick command :tag to save going back
multiple levels.

While it is useful to be able to jump to
another tag by name regardless of posi-
tion it is much more common in day to
day editing to need a refresher regarding
a piece of code that is on screen. In an
attempt to save the number of keystrokes
needed to type in the full-name of the
object we are interested in, we have a
shortcut available.

To see this in action move down to the
line containing dispatched.decrTally(5);
and move the cursor over decrTally, you
can now type Ctrl | and you will be
whisked away to the method definition
without needing to know which file or
even which directory the method was
defined in.

To jump back to where you were
editing once you have browsed through
the method you can enter Ctrl t and be
back in usetally.java.

If you are unsure of the full name of an
object that you want to display or are
just a lazy typist, you can use vim to
auto-complete the potential options by
typing :tag Tall while in vim’s command
mode and then pressing tab.

If any tags are available that begin
with Tall then the tag name will be auto-
completed. In the event of more than
one tag being a possible match, pressing
tab again will move to the next tag; even-
tually this will cycle through all the
possible tags and return to the first
match. Once you find the tag you wish to
move to, you just need to press return.

In a similar vein if you are unsure of
the tags name then you can do a wild-
card search with :tag /tally and then use
the tab key to iterate through all the tags
containing the string tally (This method

Listing 4: getTally method

// add to Tally.java within the
// outermost curly braces
public int getTally() {
return(tally);

Listing 5: getTally calls

//this 1line already present
dispatched.decrTally(5);

System.out.printin("Num delivered: " + delivered.getTally());

System.out.printin("Num dispatched: " + dispatched.getTally());

is case insensitive) until you find the
desired match.

You may have noticed that when we
displayed an object using a tag, the
screen updated to show us only the code
at our destination. To keep both on
screen simultaneously we can either
enter :stag tagname instead of :tag
tagname to open an arbitrary tag in
another window or we can use Ctrl W |
to do the same with the object under the
cursor. If the window created using the
latter is not large enough then you can
specify a number of lines before the
command, so to open the object under
the cursor in a 20 line window you
would type 20 Ctrl W] in command
mode.

Advanced Tag Files

You may have noticed that we said you
wouldn’t need to know even the direc-
tory containing the method, if your
project has a simple structure with a
single base point then you can run:

$ ctags -R *

Which will recursively walk through
each directory building up a single tag
file containing the objects for all the
source files it finds. Some important
details to note when using this approach
to create a project wide tag file is that
by default ctags builds its tag-file using
relative paths; a tag file that is moved
from one directory to another is unlikely
to continue working.

A second issue that crops up when
using ctags like this is that of projects
with different base directories. The
source files used in your project may
come from completely different parts of
the file system.

One of the simplest ways of working
around this is to run ctags once for each
base path, but with the -a option so that
the tag file is appended to rather than
overwritten. This will also sort the tag-
file for efficient searching.

m April 2003 www.linux-magazine.com

While we have workarounds to both of
the annoyances presented above it is
possible to use a little knowledge of
ctags, shell and the find command to
tailor the contents of the tag-file to meet
our needs. If ctags is given an absolute
file name to search through then the
objects listed in the tag-file will retain
the absolute path, while this may seem
like trivia it allows us to generate a tag
file full of absolute paths with a find
command:

$ ctags “find /usr/src/java2
project/ -name "*java" -print’

In this example the back-ticks surround-
ing both the find command and its
arguments alter the order of command
execution so that find is run before ctags.
When it has finished running its output
is passed back into ctags providing the
arguments ctags needs. This also allows
us to run ctags over a number of differ-
ent source trees at once by specifying
multiple paths to find.

Combining ctags with other com-
mands allows its functionality to be
extended to meet the specific needs of
your project. Most languages have the
ability to reuse external code so with a
little ingenuity you could even use ctags
to dynamically generate comprehensive
tag files based upon the projects current
code base without even needing to know
the libraries used, they could be deter-
mined from the code itself.

Now we have covered how to build
both a tag-file and navigate within vim
using it we can look at some less
obvious details. Whenever we have men-
tioned the tag-file we have said that it
uses patterns rather than line numbers to
match objects. This design has both
strengths and weaknesses, lets add some
code to each file and then look at them.

In the Tally.java class add the getTally
method to the body of the class, its exact
position is irrelevant (see Listing 4). We
can then add some calls to getTally in

usetall.java under the dispatched.
decrTally(5); line (see Listing 5).

We now run ctags -a * to append any
new objects to the tag-file. Running ctags
in append mode will not add all the
functions twice, it will only add those
not present without needing to adjust
those already in the file. This added to
the fact that changing the code around
the tagged objects does not break the
tags are the two main reasons for choos-
ing this implementation.

However, like most benefits, this tactic
brings problems of its own into play. If
we go back and look at the Tally.java
class then it becomes clear that it has
two constructors.

Open the usetally.java file and move
the cursor to the Tally() section of the
Tally delivered = new Tally(); line. If you
then jump to the constructor using Ctrl |
you will be taken to the first constructor,
the one that takes no arguments, as
expected.

Now navigate back and then repeat
the process with the line beneath. In this
line the Tally object is created with an
argument passed in. Notice how you are,
incorrectly this time, taken to the same
constructor as before?

Working

When ctags scans through the tag-file
the first object that matches your desti-
nation is returned, in this case it is the
first constructor every time as ctags does
not look at the argument list of an object,
in the eyes of ctags all constructors are
created equal.

At first glance this seems like a show
stopping bug but in line with the “Keep
It Simple Stupid” (KISS) philosophy
ctags delegates the resolution of this to
the editor itself, ctags gathers informa-
tion about all available object, how to
best resolve conflicts is left to the editor.
In Vim we have the tnext and tselect
commands to remove this issue.

If you jump to a match (Using either
:tag tagname or Ctrl]) and do not see the
code you are expecting you can issue a

Table 1: vim commands

command

moves to

tirst
:[num]tprevious

first match

[num] previous match

[numltnext [num] next match
itlast last match

Although we use vim to illustrate
the uses of ctags in the body of this
article it is also possible to use tags
from within Emacs, allowing us all of
the same benefits. By default Emacs
uses an external application called
etags to generate its tag-files (which
are named TAGS and have a different
internal format from those generated
by ctags.)

Fortunately when you install ctags a
symbolic link is created called etags
that invokes the ctags binary but in
etags emulation mode. When invoked
as etags its output is in the TAGS file
format.

Emacs allows the full set of tag
operations that vim does and this is a
brief introduction to some of them.
For more details about the when and
why you would use them you should
consult the main body of the text.
Emacs is a complex and powerful
editor, unless you are already an
Emacs user familiar with principles
such as the META Kkey, this brief

explanations given here will not be
enough to get you started.

To read in a TAG file enter M-x and
type visit-tags-table followed by
return. You will then be prompted for
the location of the TAGS file you wish
to use. Select this and press return. To
jump to a tag by name type M-. and
then you can either type the full tag-
name or enter a partial name and use
tab for auto-completion.

If you want to jump to the tag under
the cursor then you enter the same
command (M-.) but press return to
accept the default value, which is the
currently selected tag. To return to
your base point you enter M-*.

If there are multiple possible
matches for the destination tag once
you have visited the first match you
can always iterate through them with
C-u M.

Full details of tags within Emacs can
be found within the Emacs tag info
page, a document that excels in cover-
age if not in being user-friendly.

:tnext in command mode and you begin
to cycle forward through the possible
matches. In this case if you try and jump
to the second constructor you will be
taken to the first match, which is incor-
rect, you can then issue a :tnext to
continue through to the next possible
match.

When dealing with an object that has
a number of constructors or a class hier-
archy that has multiple classes with
identically named methods, iterating
though the potential matches can
be as time consuming as looking up
the documentation. Instead of going
through one at a time you can enter
:tselect and be presented with a list of all
possible matches along with some meta-
data about the match, such as the
type of object and the name of the file
containing it.

In addition to the basic tnext and
tselect navigation commands shown vim
cal also use additional commands (see
Table 1). If not specified in the command
then [num] defaults to one. As an aside
the :tselect command can take a search

string (such as :tselect /Tally) and it will
return a list of everything in the tag file
that matches, along with a small amount
of meta-data that may make your choice
a little easier.

Closing Tag
Now that you have been introduced to
the basic functionality of ctags when
used in conjunction with a powerful edi-
tor, you will hopefully find navigating
through a tangle of unfamiliar source
code much less of a chore.

ctags is a paragon of the “each tool
should do one thing and do it well” phi-
losophy and once you start to include it
in your toolbox, either running it by
hand or combining it with your other
build tools you will wonder how you
ever got along without it. |

Dean Wilson is a Unix system admin
and software developer at
WebPerform Group Ltd.

He has encountered outdated
documentation once to often for his
own good.

o
o}
I
-
=2
<
L
I
-

www.linux-magazine.com April 2003 m

