
language also allows the user to script
complex tasks.

If you use a major distribution, you
will probably find a whole bunch of shell
scripts running in the background. These
files are identified by the #!/bin/bash or
#!/bin/sh string in the first line. The
expression specifies the path to the com-
mand interpreter and is known to
programmers as shebang (which is short
for sharp, “#” and bang, “!”).

Keys and Modes
Commands entered in the command line
can be edited before pressing enter to
launch them. There are two text editing
modes: vi and emacs. Both UNIX
standard editors use a variety of
keyboard shortcuts to delete, enter or
search for data, and these shortcuts are
also available in bash.

You can toggle the GNU shell,
depending on your preferred editor:
set -o vi will switch to vi mode, and set -o
emacs will return to the default emacs

The history of the UNIX shell starts
at the end of the 60’s. At this time
Ken Thompson and Dennis Ritchie

were still busy developing the UNIX
operating system. The developers were
still on the lookout for an interface
between the system and its users.

This interface would need to pass
information between the operating
system and the user. The machine
should be able to understand com-
mands entered on the keyboard as
easily as the user could understand
messages generated by the system.
This is why the shell is referred
to as a command interpreter.

Enter Stephen R. Bourne
and his invention, the
Bourne Shell (aka the
AT&T Shell or simply sh),
which has become the classic
UNIX shell since. The shell provided
scripting facilities, although its interac-
tive functionality was somewhat
impractical. It did not provide or even
envisage a history function – that is, a
function that allows users to
see and edit commands they have
already used. More developments
followed, such as the Korn Shell (ksh)
and the C Shell (csh).

In the early 80’s, Richard Stallman’s
GNU project was faced with a similar
problem to the one Thompson and
Ritchie had been faced with: he needed a
user interface.

His answer was to write a command
interpreter of his own, which he called
Bash. This name is both an acronym and
a play on words and means Bourne
Again Shell. Bash command structure is
based on the Bourne Shell, but also
incorporates some elements from the
Korn and C shells.

Besides interpreting commands, bash
supports the user by calling other
programs. Its powerful programming

86 May 2003 www.linux-magazine.com

For many newbies the shell is a mystery best left to advanced users and Linux gurus. The shell prompt provides access to

a flexible working environment that allows users to perform almost any task. BY ANDREAS KNEIB

Bash Configuration

Shell Dressing

Bash ConfigurationLINUX USER

Keys Command

[Ctrl-r] Search for commands

[Ctrl-l] Clear screen

[Tab] Complete command or filename

[Ctrl-e] Place cursor at end of line

[Ctrl-a] Place cursor at beginning of line

[Ctrl-u] Delete input

[Ctrl-k] Delete input as of cursor position

[Ctrl-d] Delete character under cursor

[Alt-t] Transpose words around cursor

[Alt-b] Move cursor back one word

[Alt-f] Move cursor forward one word

Table 1: Emacs keyboard
mappings in bash

mode. Figure 1 shows a user switching
editor modes. bind -v | grep keymap tells
you the current mode. To keep things
simple, we will only be looking at emacs
mode in this article.

Let’s take a look at some examples of
keyboard shortcuts. You can hit [Alt-t] to
swap the two words before and after the
cursor position. The up and down arrow
keys allow you to scroll through the
commands you have just entered. The
[Tab] key expands commands and/
or filenames, and [Ctrl-r] searches
for earlier entries. Table 1 provides
an overview of the most important
keyboard shortcuts.

Global keyboard mappings are stored
in the /etc/inputrc file, or in ~/.inputrc
for individual users. Of course, these
configuration files do not merely contain
the bash configuration. Instead they
control a function called readline that is
used by other programs (such as GNU
Plot, the GNU Debugger gdb, or even
sax2 and smbclient). Let’s take a look at
the internal structure of the /etc/inputrc
file. You can expect entries like the
following:

/etc/inputrc examplefile

set meta-flag on
set output-meta on
set convert-meta off
"\e[A": previous-history
"\e[4~": end-of-line

The first three lines starting with set do
exactly that with readline variables. The
set meta-flag on entry allows you to
input 8 bit characters (that is foreign
language characters and the like). set
output-meta on allows the shell to output
these characters.

The last variable, convert-meta off,
prevents unwanted character conver-
sions. As you may already have guessed,
this variable allows you to use non-

standard characters in the command
line.

The lines that follow are more difficult
to interpret. The previous-history scrolls
back through the list of previously
entered commands. “\e[A” maps the up-
arrow key to this parameter, with \e
being the Escape character. A tool such
as showkey might help you get to grips
with this configuration: it displays the
following when you press the up-arrow
and end-of-line keys:

[and]~ > showkey -a
^[[A 27 0033 0x1b

91 0133 0x5b
65 0101 0x41

^[[4~ 27 0033 0x1b
91 0133 0x5b
52 0064 0x34
126 0176 0x7e

^[[4~ maps to the ”\e[4~” definition in
/etc/inputrc. It uses the end-of-line
function to specify moving the cursor to
the end of the current line. ^[[4~ or
”\e[4~” maps to the [End] key. Our
example may be slightly different than
your configuration, as the X Server
configuration is also significant. There
are a few GUI programs, such as xev
and xkeycaps that you might like to use
as an alternative
to showkey.

Let us stop
editing the con-
figuration file at
this point and try
out a few addi-
tional settings

with the bind command. If you need
more detail on the readline library, you
can of course type man readline to
display the manual.

Binding and Unbinding
The bind command provides a con-
venient keyboard mapping method for
the shell. You can use the -P option to
display a list of the current bindings as in
Listing 1.

Our example uses | (the ‘pipe’ charac-
ter) to redirect the output from bind -P to
the less pager for more convenient
scrolling and reading. The technical term
for this is piping.

As the previous example shows, the
[Ctrl-b] or left arrow keys call the
backward-char function. \C denotes the
Ctrl key.

The bind key function command
allows you to re-map keys during a
session. As you may already have
noticed, the [Ctrl-l] keyboard shortcut
clears the screen and restores the
prompt.

Now let’s bind the refresh function to
a new keyboard shortcut. We will start
by piping the output of the bind com-
mand to grep to filter the line with the C-l
character sequence:

[and]~ > bind -p | grep "C-l"
"\C-l": clear-screen

As we can see the keyboard shortcut
[Ctrl-l] maps to the clear-screen function.
Just to make sure, let’s now call the
function with the bind option, -q. The
parameter -q stands for query and shows

87www.linux-magazine.com May 2003

LINUX USERBash Configuration

[and]~ > bind -P | less

abort can be found on "\C-g", "\C-x\C-g", "\e\C-g".

accept-line can be found on "\C-j", "\C-m".

backward-char can be found on "\C-b", "\e[D".

backward-delete-char can be found on "\C-h", "\C-?".

[...]

Listing 1: Current bindings

Figure 1: Switching editor modes in bash

Figure 2: Bash command completion using the tabulator key

Red Hat, and other distributions often do
things their own way.

So let’s try to keep to what the bash
manual man bash – a mere 5100 lines –
tells us. When bash is launched as a
login shell it parses the following
configuration files in the following order:
• /etc/profile
• ~/.bash_profile
• ~/.bash_login
• ~/.profile
The question is, what makes bash a
login shell? After logging on via a charac-
ter based console, you will discover that
you have access to a shell. Bash has
parsed the commands in the four files
we just mentioned and launched them
when you logged on.

It makes sense to place entries such as
environment variables in the global
/etc/profile or the local ~/.profile,
although the shell will not parse the later
unless ~/.bash_profile is missing. Any
subsequent shells inherit their settings
and thus the environment from bash.

Things are a bit more confusing if you
use a display manager instead of a text
console to log on. Your window manager
preferences define whether an xterm
with bash is launched as your login
shell; the window manager itself is a
program that launches X Window
applications.

Calling an Xterm with the -ls flag set is
the best way to ensure access to a login

shell. Any configuration changes you
make during a session take effect after
calling source to re-parse the con-
figuration file. The syntax is as follows:

[root] # source /etc/profile

However, you cannot do this on an X
Window System if the shell is running in
a terminal emulation. The new con-
figuration does not affect the shell and it
will continue to use the original settings.
Your best bet is to quit the GUI desktop
and log back on again.

Automated tasks, such as removing
old backup files, that you want bash to
perform when you log out should also be
placed in ~/.bash_logout. That con-
cludes our tour of the login shell,
although we have hardly touched on its
many capabilities, as they are beyond the
scope of this article.

As you may have guessed there are
also non-login shells. Bash will expect to
find instructions for this kind of shell in
~/.bashrc. You should not rely on this,
as many distributions also parse the file
for login shells.

The login shell configuration may be
so good that you do not need to modify
the bash configuration in ~/.bashrc.
Now its time to look at the Babylonian
confusion of distributions using SuSE
as an example. The /etc/profile header
contains a note from the distributor,

the keyboard shortcut that is bound to
the specified function.

[and]~ > bind -q clear-screen
clear-screen can be invoked U

via "\C-l".

The -u (unbind) parameter removes the
bindings for clear-screen. The following
syntax is designed to test whether the
modification has been applied:

[and]~ > bind -u clear-screen
[and]~ > bind -q clear-screen
clear-screen is not bound to U

any keys.

The next step is to apply the bind key
function syntax and ensure that [Ctrl-t]
really does clear the screen:

[and]~ > bind '"\C-t" U

clear-screen'
[and]~ > bind -q clear-screen
clear-screen can be invoked U

via "\C-t".

Thus, [Ctrl-t] now clears the bash
screen, rather than [Ctrl-l]. Unfor-
tunately, this overwrites the transpose-
chars function. Obviously, it makes
sense to avoid overwriting existing bind-
ings, something you should remember
for the future.

You can refer to Table 2 for a list of
bindings or consult the comprehensive
manual by typing man bashbuiltins.

Files and More Files
Now that we have introduced the
/etc/inputrc options, let’s take a look at
some more bash files. The GNU shell
uses a variety of configuration files, and
all of them are used differently. SuSE,

88 May 2003 www.linux-magazine.com

Bash ConfigurationLINUX USER

Option Action
bind -f [file] Reads [file] as the configuration file
bind -l Function list
bind -p List of functions and bindings
bind -P Simple list of functions and bindings
bind -q Queries the keyboard combination

for a function
bind -r key Removes the bindings for a key
bind -u function Removes the keyboard shortcut for a

function
bind -V Shows the readline variables

Table 2: Bind Options

Figure 3: The .bashrc file is used for shell configuration

telling you not to edit this file. Any
global changes you want to make must
be placed in /etc/profile.local, the reason
being that /etc/profile can be overwritten
by a system update or the SuSE YaST
tool.

That’s not all: /etc/profile.dos, /etc/
SuSEconfig/profile, and any files in the
/etc/profile.d directory are parsed by
/etc/profile.

Inexperienced users are advised to
steer clear of these files. As you gain
more experience, you should be able to
break down and simplify these
structures.

Variables and Environments
We have looked at configuration so far,
but now it is time to examine their
contents more closely. alias is a function
that many users utilize; it allows you to
define a command as a shortcut for a
more complex command line:

[and]~ > alias gnus='xemacs -nwU
-f gnus'

This syntax creates the gnus shortcut
that launches the Gnus newsreader in a
character based console without too
much typing. Of course, you can assign
an alias to a series of semicolon
separated commands:

[and]~ > alias unmount=U
'cd;umount /media/cdrom;eject'

Typing unmount in the command line
now changes (cd) to your home
directory, unmounts the medium in your
CD ROM drive (umount /media/cdrom)
and ejects the CD (eject).

However, you cannot use an alias to
pass a parameter to a program:

[and]~ > alias option=U
'-fn lucidasanstypewriter-14'
[and]~ > xterm option
xterm: bad command line U

option "option"

As this attempted alias binding does not
work, it makes sense to remove the
shortcut:

[and]~ > unalias option

Typing alias without any additional
parameters displays a list of aliases in
alphabetical order. As alias option=… is
no longer on the list, it is safe to assume
that we have removed the binding:

[and]~ > alias
alias newart='vim ~/work/U
article/newart.txt'
alias nhol='sudo /usr/local/U
sbin/fetchnews -vvv'
alias o='less'
alias rd='rmdir'

Any aliases you want to make persistent
should be added to ~/.bashrc or ~/
.profile.

We mentioned environment variables
just a while back. These variables are
passed to commands and programs and
provide an environment containing
specific constants such as the standard
news server. Let’s look at an example to
discover what this implies.

Mutt is a character based mail
program that requires an external editor
for message editing. The mailer looks at
the EDITOR variable to discover the
standard editor. To find out what your
editor variable defaults to, simply type
the following command:

[and]~ > echo $EDITOR
/usr/bin/vim

PATH and MANPATH are two other
important environment variables. PATH
stores the search path for executable
files. When you launch a program from
bash, the shell searches for the file in a
list of directories. The search terminates
when the required entry is found, and
the command is executed. Thus, the
position of a directory in the PATH is

significant.
MANPATH on the other

hand stores the search path
for manpages. If this has
whetted your appetite, you
can type export and printenv
to view an almost infinite list
of environment variables.

It is not difficult to create your own
environment variables – the process
typically involves the export command.
Let’s start by defining a variable called
PS1. It will contain a prompt string. The
prompt is the part of the command line
that precedes the area where commands
are entered. The prompt can provide you
with useful information:

[and]~ > export PS1='\u at \t U

on \h in \w \$ '
and at 09:29:02 on comone in ~ $

As you can see, the prompt has changed.
The \u displays the user name, \t shows
the 24 hour time-of-day, \h tells you the
hostname, \w outputs the current
directory, and \$ terminates the prompt.
If this is too untidy for you, you can
simply display the user name, using a
background color to highlight it. To do
so, we will be using the escape character
\e and some escape sequences:

[and]~ > export PS1=U
'\e[32m\u\e[0m \$ '

This results in a green prompt that helps
you keep track of what bash is doing
when the screen becomes cluttered. For
more information on Escape sequences,
simply type man console_code.

You might like to add your favorite
prompt to /etc/profile or ~/.bash_profile
to make it persistent:

PS1='\w \$'
export PS1

Bash is neither a mystery nor a hacker
tool, but simply a flexible program that
helps you get to grips with every day
computing. ■

89www.linux-magazine.com May 2003

LINUX USERBash Configuration

Figure 4: Prompting in color

Andreas Kneib has
been living on this
planet since 1967,
and if he’s not too
busy with his veg-
etable patch, tends
to sit in the corner
messing with scripts and con-
figuration files. His first contact with
computers was an old C64, followed
by an Amiga 500, and Linux some
time later.The author has been
writing for Linux Magazine on and
off since 2001.

TH
E A

UT
HO

R

