
scene. This illustration is
based on an example
from Inventor Mentor
([3], Chapter 10,
example 2), how-
ever, we have
expanded on it
and moved from
Motif to using
Qt and SoQt.

Figure 2
shows the

scene graph for the drawing
program. It requires only four

nodes, and the user can edit three of
them dynamically (only the lighting
remains constant). Pressing the center
mouse button rotates the camera about
the source. dotCoor-
dinates and dots are
the most interesting
nodes:
• dotCoordinates are

objects of the
SoCoordinate3 class
that expects an
arbitrary number of
3D coordinates.

• dots are objects of
the SoDotSet class
that draws all the
coordinates for the
dotCoordinates
node as a dot in a
3D space.

The user can add
new dots by pressing
the left mouse but-
ton. Clicking the

right mouse button deletes all the dots
from the scene.

The Right Choice
A program that needs to reflect a user’s
wishes interactively, needs to select and
modify individual objects in the scene
graph. This example adds new dots to
dotCoordinates and tells the dots node to
draw the new dots.

Nodes can be accessed and selected by
reference to their position in the graph.
Each group node provides a method
called getChild() for this purpose. Figure
2 shows how the program references
individual nodes via the root of the
scene graph. However, this simple
method is extremely error-prone: if

Athree dimensional scene appears
far more realistic if it is animated
and the user can interact with it.

The previous article in our Coin series
[2] introduced the concept of animation
with a plane circumnavigating a revolv-
ing globe. However, the scene did not
allow the user to interact with, or modify
the scene, although it was possible to
use SoQtExaminerViewer to view the
scene from different perspectives.

Our interactive example in this article
is a simple drawing program that allows
the user to draw arbitrary dots in a 3D

72 May 2003 www.linux-magazine.com

Interactive 3D Worlds with Coin and Qt

Drawing in 3D
In a realistic 3D world the observer becomes an actor whose actions

provoke reactions that leave tracks in virtual reality. Qt and Coin

allow you to program animated and interactive 3D worlds quickly

and easily. We take a look at how you can interact with your new 3D

world and create new effects.

BY STEPHAN SIEMEN

Coin 3D – InteractionPROGRAMMING

Figure 1: The default right-mouse-button menu gives many options, such
as rendering only a wireframe of the scene.

The new version of Coin was released
shortly before this article was printed.
Version 2.0 contains the VRML extension as
mentioned in this article and can be
downloaded from [5].

Coin 3D Update



nodes are added to the scene graph later,
the indices change. Also, larger scene
graphs tend to become unmanageable –
in this case you might prefer to use the
setName() method to assign a unique
name to each node. A SoSearchAction
class object can then be used to discover
and change the position of the object.

The newDot() in Listing 1 adds a new
dot to the scene. It expects to be passed a
pointer to the rendering area and the
coordinates of the dot. Lines 5 to 7
discover the pointers for the third and
fourth nodes in the scene graph starting
at the root node. Finally, lines 10 and 12
modify the characteristics of the node.

Adding Dots to the Scene
When a user adds dots to a scene the
program has to correlate the two-dimen-
sional mouse position in the window to
the three-dimensional position in the
scene. Our example uses a simple
approach placing all the dots on a plane
that transects the origin.

Figure 3 shows the geometry of the
volume that SoPerspectiveCamera sees as
a section of the 3D scene. If the camera
range is set to infinity, rendering can
take a while. This is why the
nearDistance and farDistance parameters
restrict the volume of the camera
viewfinder. In our example nearDistance
is set to 1 and farDistance to 7. As the
distance between the camera and the
origin is 4, the focus of the scene is
exactly in middle of nearDistance and
farDistance. The focal point is traversed
by the plane (highlighted in green) on
which the user can draw dots.

By default units of distance are relative
to one another in Open Inventor,
however, you can use the SoUnit node to
assign a specific unit of distance.

The Mouse in the Volume
Listing 2 maps the x and y mouse
coordinates on this volume. Imagine this
as a ray that vertically transects the
camera volume. Figure 3 shows this ray
in blue. The individual steps are as
follows:

• Lines 7 to 9 convert the mouse coordi-
nates from the X11 window to the
rendering area units (value between 0
and 1). The origin is bottom left, in
contrast to top left for X11.

• Line 17 gets an SbViewVolume class
object that describes the visible
section of the scene, thus providing a
correct viewing perspective.

• Line 21 extends the mouse pointer,
converting the dot into a line that
extends vertically into the image. The
end points are stored in p0 and p1.

• The drawing layer is half-way through
the image and transects the line
exactly at its mid-point.

This is only one of many approaches to
transferring a mouse position to a scene.
More complex approaches map the
mouse pointer to three dimensional
objects. 

Additional details are available in 
the online documentation for Coin 
[6] and Inventor Mentor [3], [4]. The
SoPickAction and SoPickedDot classes
are particularly useful.

Engines, Sensors & Callbacks
Open Inventor provides two techniques
for programming animations: engines

73www.linux-magazine.com May 2003

PROGRAMMINGCoin 3D – Interaction

Figure 2: The neat scene graph for a 3D drawing program. The four children of the root node can be
queried using the getChild() method

root

dot coordinates

root->getChild(2) root->getChild(3)root->getChild(1)root->getChild(0)

camera dotlight

Figure 3: In Coin the observer looks at a 3D scene through a camera. The camera only shows a section of
the world that is limited by four margins and two depth layers (red)

position
Camera

»nearDistance«

»farDistance«

Line of vision

»widthAngle«

»heightAngle«

»p1«
»p0«

Point of 
intersection

01 // Add new dots to the scene
02 void newDot(SoQtRenderArea *renderArea, const SbVec3f dot)
03 {
04 // Pointer to other nodes in the graph
05 SoGroup *root = (SoGroup *) renderArea->getSceneGraph();
06 SoCoordinate3
*dotCoordinates = (SoCoordinate3 *) root
->getChild(2);
07 SoDotSet *dots = (SoDotSet *) root->getChild(3);
08
09 // Add coordinates
10 dotCoordinates->dot.set1Value(dotCoordinates->dot.getNum(), dot);
11 // Get the dot node to draw all the coordinates
12 dots->numDots. setValue(dotCoordinates->dot.getNum());
13 }

Listing 1: New Dots



In [2] we used two engines to rotate a
globe. Sensors are objects that recognize
changes in the scene graph and react 
by referring to a callback function. In
comparison to engines, sensors provide
the programmer with more potential, as
they allow original code to be added. But

this also means that sensors are external
to the scene graph and cannot be stored
in the scene graph files.

Our example uses a sensor to rotate
the camera in the scene. When the user
presses the center mouse button the
code in Listing 3a applies the timer sen-
sor, SoTimerSensor, to the camera. The
sensor refers to its callback function
(Listing 3b) at regular intervals to gradu-
ally rotate the camera. Other sensors,
such as SoNodeSensor, react to changes
in monitored nodes and react by calling
their own callback functions.

One advantage that callbacks offer is
the fact that they can do more than
modify the scene graph. A sensor can,
for example, write to the terminal when-
ever a characteristic of a monitored
object changes. However, callbacks
should not contain too much code, as
they may be called frequently, and this
could impact program speed.

Callback Parameters
In Coin, callbacks have two parameters.
The first is a pointer to a void type that
allows the programmer to pass a refer-
ence to an arbitrary object to the
function. Thus, Listing 3b expects a
SoCamera class object, Listing 3a having
first passed the reference to the sensor
constructor. The second parameter is a
SoSensor type pointer that passes infor-
mation from the calling sensor. However,
Listing 3b does not use this parameter.

and sensors. Engines are objects that link
to node fields in the scene graph and
change their values. Changes are
effected either by logical links or by time
functions. As the engines are part of the
scene graph they can be stored in files
along with their characteristics. 

74 May 2003 www.linux-magazine.com

Coin 3D – InteractionPROGRAMMING

Figure 4a: The example program initially looks like a 2D drawing program.
You use the left mouse button to draw arbitrary figures

Figure 4b: When the user moves the camera the 3D capabilities of the pro-
gram become apparent. New dots are shown on a new layer

01 // Uses the mouse position to calculate
02 // a 3D dot in the scene
03 void projection(SoQtRenderArea *renderArea,
04 int mouseX, int mouseY, SbVec3f &interface)
05 {
06 // Position of mouse in rendering area:
07 SbVec2s size = renderArea->getSize(
08 float x = float(mouseX) / size[0];
09 float y = float(size[1] - mouseY) / size[1];
10
11 // Pointer to camera
12 SoGroup *root = (SoGroup *) renderArea->getSceneGraph();
13 SoCamera *camera = (SoCamera *) root->getChild(0);
14
15 // Volume visible to camera
16 SbViewVolume cameraVolume;
17 cameraVolume = camera->getViewVolume();
18
19 // Mouse line vertical to scene
20 // The other endpoint is created by mirroring on the plane
21 SbVec3f p0, p1;
22 cameraVolume.projectDotToLine(SbVec2f(x,y), p0, p1);
23
24 // The center of the line is the position we are looking for
25 // on the surface, which goes through the origin
26 interface = (p0 + p1) / 2.0;
27 }

Listing 2: Mouse based projections



When a user drags the
mouse or presses a but-
ton, the X Server notes the
action and passes it to the
program as a so called
event. Qt uses the QEvent
class to provide a simple
approach to providing event handling.
SoQt allows you to add a callback func-
tion to the rendering area. SoQt then
calls the callback whenever a QEvent
type event occurs. In our example the
function is called eventHandler() and is
added to the rendering area as follows:

renderArea->setEventCallback(
eventHandler, renderArea);

The code for the eventHandler() function
is shown in Listing 4.

Event Handling in a Switch
Block
The callback function mainly comprises
a Switch-Case construct that queries
various events. Again, this function
should not be too bulky, as it is called
whenever event occurs and could thus
impact seriously on a program per-
formance. However, Qt also provides
more intelligent ways of handling
individual events without needing to
evaluate each event. The Qt online
documentation provides more detail.

To trap events, the program needs to
initialize an event queue that remains
active throughout runtime. As this queue

is not terminated until the program ends,
it has to be started with the last
command in main().

The complete program is available
from [9]. After compiling and launching
the program, it should appear as shown
in Figures 4a and 4b. You can use the left
mouse button to draw arbitrary two
dimensional figures, and rotate them
with the control elements at the edge of
the window. Before we complete this
mini-series on Coin and Open Inventor,
let’s first take a look at one or two more
features.

VRML Import
In the previous article [2], we learnt that
it is quite easy to convert VRML 1.0 files
to Open Inventor format. The next Coin
version (2.0) promises more support for
VRML versions 1.0 or later. 

Some VRML nodes have different
properties, despite keeping the same
name. To use these new nodes in Open
Inventor it was necessary to assign new
names to them. 

The SoVRML prefix was used for
classes that behave differently in later
VRML versions. Thus SoSphere and
SoVRMLSphere will describe a globe in

future. Refer to the Coin 2.0
beta documentation for
more details [6].

OpenGL Is Alive
Users with 3D graphics in
OpenGL code can continue

to use them after moving to Open Inven-
tor. As the latter is based on OpenGL,
and uses the OpenGL state machine, it is
quite simple to integrate OpenGL code in
an Open Inventor application. You would
typically add the code to a callback func-
tion that the scene graph calls. OpenGL
code cannot be stored in files, as it does
not belong to the graph itself.

Nodekits are another Open Inventor
technique – a kind of blackbox that
conceals an internal scene graph of its
own. They can be used just like any
other Open Inventor class and possess
author-definable properties. Nodekits are
a perfect solution for creating libraries.

Complex Objects
More complex surfaces and geometric
models, such as Bezier curves, are quite
easy to model in Open Inventor. This
type of object uses the following
principle: Just like the SoDotSet node in
the previous example, all of the points
that make up the geometry of the object
must be stored in one or more nodes of
the scene graph. The geometry that
defines the form is added later. This
makes it easy to change the geometry,
but retain the same anchor points.

75www.linux-magazine.com May 2003

PROGRAMMINGCoin 3D – Interaction

01 void tickerCallback(void *data, SoSensor *)
02 {
03 // Pointer to camera
04 SoCamera *camera = (SoCamera *) data;
05 SbRotation rot;
06 SbMatrix mtx;
07 SbVec3f pos;
08
09 // Rotate camera
10 pos = camera->position.getValue();
11 rot = SbRotation(SbVec3f(0,1,0), ROTATION_ANGLE);
12 mtx.setRotate(rot);
13 mtx.multVecMatrix(pos, pos);
14 camera->position.setValue(pos);
15
16 // Correct orientation of camera
17 camera->orientation.setValue(camera
->orientation.getValue() * rot);
18 }

Listing 3b: Callback

Figure 5: Coin allows you to create color stereo graphics of scenes.
Red/cyan specs give depth to the 3D cone in the eyes of the user

01 // The timer sensor passes time impulses to the camera
02 // while the center mouse button is held down
03 ticker = new SoTimerSensor(tickerCallback, camera);
04 ticker->setInterval(UPDATE_RATE);

Listing 3a: Sensor



same object from slightly different
angles. The brain extracts the three
dimensional information from the
differences between the two. To display
realistic 3D, a 2D screen must display

two different images for the left and 
right eye.

Most techniques use a bespoke hard-
ware for this purpose, such as 3D specs,
a special graphics adapter or screen.
Coin supports so called Anaglyph Stereo,
using two different colors to super-
impose two images and send them to the
viewer. Spectacles with different colored
lenses separate the images. Figure 5
shows an example: Coin displays the
white cone in red and cyan, if the
corresponding stereo option is enabled
in the menu.

Useful Online Sources
If you need more information on
enhancements and features for Open
Inventor, you might like to try the Coin
[5] and TGS [7] web sites. The Coin
homepage not only provides online
documentation, but also a good assort-
ment of forums and FAQs. TGS have
enhanced the original Open Inventor
version and also provide a considerable
collection of information and FAQs. ■

Stereo Graphics
Stereo graphics help to make three
dimensional objects more realistic. What
really happens is that both eyes 
see slightly different images of the 

76 May 2003 www.linux-magazine.com

Coin 3D – InteractionPROGRAMMING

[1] Stephan Siemen,Virtual World:
Linux Magazine, Issue 28, p72

[2] Stephan Siemen, Moving Objects:
Linux Magazine, Issue 29, p72

[3] Josie Wernecke,The Inventor Mentor.
Release 2: Addison-Wesley 1994,
ISBN 0-201-62495-8

[4] Summary of Inventor Mentor by SGI:
http://www.sgi.com/software/inventor/
vrml/TIMSummary.html

[5] Coin: http://www.coin3d.org
[6] Documentation for Coin libraries:

http://doc.coin3d.org
[7] TGS: http://www.tgs.com
[8] Additional information:

http://prswww.essex.ac.uk/stephan/3D/
[9] Files for the articles:

ftp://ftp.linux-magazin.de/pub/listings/
magazin/2003/04/3d/

INFO

Dr. Stephan Siemen works as a
scientist at the University of Essex (UK)
where he is involved with creating
software for 3D representation of
weather systems and teaches com-
puter graphics and programming.
Additional information on this 
subject is available from his website:
http://prswww.essex.ac.uk/
stephan/3D/.

TH
E A

UT
HO

R

01 SbBool eventHandler(void *data, QEvent *anEvent)
02 {
03 // Pointer to rendering area
04 SoQtRenderArea *renderArea = (SoQtRenderArea *) data;
05 QMouseEvent *MouseEvent;
06 SbVec3f vector;
07 SbBool handled = TRUE;
08
09 // What event has happened?
10 switch(anEvent->type()) {
11 case QEvent::MouseButtonPress:
12 // Mouse key pressed
13 MouseEvent = (QMouseEvent *) anEvent;
14
15 if(MouseEvent->button() == Qt::LeftButton) {
16 // Left mouse key: new dot
17 Projection(renderArea,MouseEvent->x(),
18 MouseEvent->y(), vector);
19 newDot(renderArea, vector);
20 }
21 else if(MouseEvent->button() == Qt::MidButton) {
22 // Center mouse key: rotate camera
23 ticker->schedule();
24 }
25 else if(MouseEvent->button() == Qt::RightButton) {
26 // right mouse key: delete all dots
27 deleteDots(renderArea);
28 }
29 break;
30 case QEvent::MouseButtonRelease:
31 // Mouse button is released
32 MouseEvent = (QMouseEvent *) anEvent;
33 if(MouseEvent->button() == Qt::MidButton) {
34 // Center mouse key: camera stable
35 ticker->unschedule();
36 }
37 break;
38 case QEvent::MouseMove:
39 // The Mouse is moved
40 MouseEvent = (QMouseEvent *) anEvent;
41 if(MouseEvent->state()) {
42 // Key pressed
43 Projection(renderArea,MouseEvent->x(),
44 MouseEvent->y(), vector);
45 newDot(renderArea, vector);
46 }
47 break;
48 }
49 return handled;
50 }

Listing 4: Event handling


