
the hard disk based “/dev” mechanism:
it seems obvious that the complexity and
numbers of supported hardware will
continue to increase, instead of becom-
ing more homologous.

Experiments with USB & Co.
Over the past few years a few attempts
have been made to overcome the
disadvantages of the current static
scheme for certain subsystems. These
mainly involved subsystems that need to
manage dynamically customizable
device configurations, such as USB,
SCSI, and opening pseudo-terminals for
user sessions (devptfs).

Devfs (device filesystem) became a
standard component in the 2.3.46 Linux

kernel and provides one approach to
solving this problem. As the name
suggests, a filesystem replaces the
functionality of the “/dev” directory.
This article shows the approach devfs
uses to cope with increasing demand,
and what advantages this approach
provides. Additionally, we will be
introducing functions and drivers that
support dynamic device registration in
devfs.

Organized
It is a well-known fact that Linux
supports a large variety of filesystems
that use a set of primitives provided by
VFS (Virtual File System) to describe
themselves to the kernel. These include

In the beginning was the File. This is
the way UNIX and Linux systems
read and write information. Even

access to the machine’s hardware is
handled by special files, or named pipes,
which traditionally reside in the “/dev”
directory on the root partition.

The sheer bulk of application fields for
Linux has seen a tremendous increase in
the number of device nodes (created by
the “/sbin/MKDEV” script) in the
“/dev” directory. It is not uncommon for
modern Linux distributions to have
about 2000 entries that take up a large
proportion of the root filesystem.

Most of these entries are purely
speculative. If you take a close look at
the “/dev” directory on a Linux
machine, you can easily
see that only a small
proportion of the
device nodes are
actually used to run
system components.
How many PC users
with Atari mice, 20
hard disks and a
RAID system do you
know?

This jumble of
nodes is more-or-less
managed by means of
a numerical scheme
that assigns major
numbers to the hard-
ware driver and
minor numbers to
the current
instance, such
as the first of
multiple hard
disks. Things
are starting to
look tough for

Devfs provides a virtual directory tree to organize and tidy up the chaotic “/dev” directory with its numerous static

entries. Gentoo Linux and Mandrake already use it, others can now follow suit. We take a look at the benefits that it can

bring to both a user and a developer. BY STEFAN KLETT

Devfs: Concepts, Structures and Practical Applications

Device Parking

42 May 2003 www.linux-magazine.com

DevfsKNOW HOW

superblocks, inodes, file and directory
entries (see the “Generic Data Model”
box above).

Devfs is an example of a virtual file-
system, just like procfs and autofs.
Virtual filesystems are not persistently
stored on a physical medium; instead,
the required entries are dynamically
created and destroyed in memory at
runtime by the kernel. Thus, only those
entries actually required exist at any time
– in the case of devfs these are the
devices currently in use. This reduces
the exorbitant number of entries in
comparison to the “/dev” mechanism by
a considerable amount.

Another effect that devfs has is to
reduce the time required to search
for devices – one example would be a
CD burning program such as KonCD
creating a list of the CD ROM drives on
the system.

Names and Paths
The directory structure that devfs
dynamically manages at run time
provides additional benefits. The paths
and names used represent the existing
hardware and are in a well organised
structured – although it may take some
getting used to at first. For example, the
third partition on the first hard disk,
attached to the first IDE controller is
referenced by devfs as “/dev/ide/host0/
bus0/target0/part3”.

Full names provide more information
to the operating system, applications and
particularly the user, allowing more
intuitive and structured navigation in the
device arena (see Figure 1). At the same
time this removes the need for the
arcane major-minor scheme and thus the

need to register your own devices with
the maintainer of the “devices.txt” file
distributed with the kernel. As we will
see later, devfs itself is responsible for
registering these drivers and clearing
them away after they have been used.

Traditional
New names also mean new problems: it
is easy to understand that current drivers
and programs that access the device files
directly will not have any knowledge of
the new structure. Thus, Linux systems
are currently forced to create devfs
compatibility links to ensure access to
the hardware using conventional names.

Lock file naming causes similar issues.
Designed to ensure exclusive use of
devices, filenames in the “/var/lock”
directory traditionally adhered to the
“LCK.devicename” or “LCK.Major#.
Minor#” scheme. As the end nodes in
the devfs directory structure often have
the same names – typically a number, as
in “/dev/usb/tts/0” and “/dev/tts/0” –
ambiguity and the drawbacks it can
cause cannot be ruled out.

This gives rise to questions on user
and access privilege management for the
virtual filesystem; simultaneous access
by other users is often undesirable for a
device being accessed by one user. Most
systems will thus decide to implement
the devfs daemon, devfsd (see below).

Driver processes can notify the back-
ground process which then passes the
user ID and access privileges of the
calling process to the device in question.
Wherever this makes sense, read or write
access privileges are assigned exclusively
to the original user, thus preventing
unwanted competitive access to the

device. Alternatively, the required device
nodes can be created statically using
“mknod” in the init script, and assigning
privileges by calls to “chmod” and
“chgrp”. This approach is useful in
minimally interactive environments,
where yet another daemon would be too
much of a good thing.

One good thing about devfs is the fact
that, as a fully-fledged filesystem, it is
independent of root filesystem pro-
perties. Thus, filesystems that use NTFS,
DOS FAT, ISO 9660, or even a ROM as
their root partition are viable, despite
being incapable of managing symbolic
links and named pipes.

Disk based device access prevented
this approach previously. If the UID of a
ptty pseudo-terminal changes from
“root” to the real user, the inode for
the ptty device node is written to – of
course, this would be impossible on
a read-only filesystem. As a more generic
solution, devfs completely assumes
the role of devptsfs, as required by the
Unix98 standard.

Daemonic Manager
As devfs dynamically customizes the
device entries to reflect the current
environment, there must be a facility for
this purpose within devfs.

The devfsd process is normally best
suited to this task. Devfsd is called by
the “rc.sysinit” script when a machine is
bootstrapped. In addition to automati-
cally customizing UIDs and setting user
privileges, devfsd automatically creates
any symbolic links required for down-
ward compatibility.

The Linux administrator can also use
the “/etc/devfsd.conf” file, to explicitly

43www.linux-magazine.com May 2003

KNOW HOWDevfs

Filesystems use the following generic data structures to create Linux
VFS primitives:
• Superblocks comprise information for managing mounted filesys-

tems, including their type and an indication of whether the
filesystem has been written to since mounting.

• Inodes contain information on individual files.The inode number is
used internally to identify a file.

• File objects (files) contain information on the interactions between
processes and files. File objects only exist within kernel memory
while a process is accessing a file.

• Directory entries (dentry) links files and directories by representing
access path components. A special buffer called the Dentry Cache is
used for this purpose.

The Generic Data Model

Figure 1: The new identification scheme uses full names instead of numbers
and single digit names. The tree structure is well-suited to describing hard-
ware specifics

The parameters passed to “devfs_
register” exactly match the definable
components of the record type. A
number of list pointers are provided to
handle management tasks, however,
driver developers do not need to concern
themselves with them.

The first parameter specifies the direc-
tory where the new device will be stored,
such as “/dev/ide/”. Currently, an addi-
tional function, “devfs_mkdir”, is
responsible for registering directories – if
you intend to support a new device
class, that is. “devfs_mkdir” also returns
a “devfs _handle”:

devfs_handle_t devfs_mk_dir U

(devfs_handle_t dir, const U

char *name, void *info)

The “flags” parameter specifies whether
the entry automatically inherits the UID
of the calling process or the identity of
the user that created the entry manually,
such as “root” for example. The range of
values for the “flags” parameter is listed
in “devfs_fs _kernel.h”. “flags” can even
hide an entry, preventing it from being
displayed when the directory entries are
listed. In fact, this is how removable
devices are handled during runtime.

Devfs may make major/minor
numbers unnecessary, but it is still
important to make sure that applications
based on the old scheme will be able to
coexist with the new. To this end, devfs
entries contain variables to identify

themselves to the numbering
scheme. Major and minor
numbers are provided by the
“devfs_register_chardev”
and “devfs_register_blkdev”
wrappers for example; the
wrappers prevent the “devfs-
icized” versions of the same
name from being called. This
allows you to call “mknod”
to create appropriate entries.

There are also symbolic
link functions that automati-

cally create compatibility links when a
module is loaded. The “mode_t” type is
an integer that specifies the UID and
access privileges to be applied when cre-
ating an entry.

“ops” refers to a “file_operations”
structure from “linux/include/fs/fs.h”
that allows you to define valid access
operations for an entry. “Info” has no
meaning for most modules, and is
typically set to “NULL”. The functions
introduced at this point allow you to
enhance and add functions. The source-
file “linux/fs/devfs/base.c” provides
further details.

Practical Devfs Applications
To perform non-invasive testing of a
devfs based system, you might like to
download the ISO image of the Gentoo
Linux Live CD from [4]. Incidentally, this
system leverages the fact that the CD
ROM can be used as a universal root
filesystem. Thus, you do not need a free
partition on your hard disk.

Expect your mileage to differ, if you
attempt to enable devfs on other Linux
distributions. Our test candidate for this
article was Conectiva 8.0, although we
had to replace the default 2.4.18 kernel
with a 2.4.20 version, as we were unable
to compile the Conectiva sources with
devfs functionality.

The 2.4.20 kernel, that is also used on
the Gentoo CD, did not cause us any
trouble after enabling the devfs configu-
ration options:

tell devfsd to create user-
defined links. The practical
thing about this is that
regular expressions can be
used to define ‘allow’ or
‘deny’ rules for user-defin-
able actions in “devfsd.
conf”; the “devfsd.conf”
manpage provides more
details on the syntax.

Normally, a hardware
driver registers by calling
its internal “devfs_register”
function to let devfsd know that it has
been loaded. The “try_modload” devfs
function, which informs devfsd when-
ever an application attempts to access
the inode of a device entry, is responsi-
ble for on-the-fly module loading.
Devfsd then creates a entry that reflects
the UID and privileges of the calling
process, unless it has been configured
not to do so (see Figure 2).

Finally, devfsd ensures that any
changes to access privileges persist after
rebooting. To do so, it copies the inodes
for any changed entries to the directory
defined in “/etc/devfsd.conf”. When the
system reboots, devfsd restores the
inodes by writing them back.

Devfs does not need to use “/dev” as a
mountpoint and can even be mounted
multiple times. Thus, you need to define
the root directory for devfsd on calling
the daemon. Multiple devfsd instances
can thus manage multiple device file
system images in parallel.

Customizing Drivers for
Devfs
To allow a driver to work with devfs, you
must import the “devfs_fs_kernel.h”
kernel file. Amongst other things, the file
defines the “devfs_register” and “devfs_
unregister” functions, as shown in
Listing 1. As the names suggest, these
modules are responsible for controlling
the registration of devfs entries, and use
“devfs_handle” as a pointer to a
“devfs_entry” structure.

44 May 2003 www.linux-magazine.com

DevfsKNOW HOW

Figure 2: Demonstration of the registration function. When a module is
loaded, devfs automatically creates a directory entry and leaf nodes

extern devfs_handle_t devfs_register (devfs_handle_t dir, const char *name, unsigned int flags,
unsigned int major, unsigned int minor, umode_t mode,
void *ops, void *info);

extern void devfs_unregister (devfs_handle_t de);

Listing 1: Excerpt from “devfs_fs_kernel.h”

• “CONFIG_EXPERIMENTAL”,
• “CONFIG _DEVFS_FS”, and
• “CONFIG_DEVFS _MOUNT”.
Following this, we downloaded the
sources from devfs developer, Richard
Gooch’s homepage [5], and then went
on to compile and install. “make, make
install” was more or less all we needed.

As the file [1] distributed with the
kernel sources explains in detail, there
were a few more steps to complete to
set up the configuration files on the test
system.

First, we had to copy the default
“devfsd.conf”, supplied with the
sources, to “/etc”. Then we set up
“/etc/rc.d/sysinit.d” to launch devfsd by
adding a “/sbin/devfsd/dev” line. This
enables devfs as early as possible in the
boot process. This was not necessary for
Conectiva Linux, as the entry already
existed.

To allow PAM (Pluggable Authenti-
cation Modules) to work with devfs, you
have to enter the new names for the
local virtual consoles in “/etc/securetty”

to allow root logins on the consoles:

vc/1
vc/2
...
vc/8

This step is required, as PAM does not
accept symbolic links for the console.
You can comment out the “/dev/pts”
entry in “/etc/fstab”, as it is no longer
needed with devfs. This completes the
preparatory work – it is now time to boot
the machine with the new kernel.

In our lab the boot process went quite
smoothly with the exception of one or
two error messages caused by drivers
that needed customizing. After logging
on to the machine, the new, and eagerly
awaited, structure of “/dev” was
revealed (see Figure 3).

Figure 4 shows the humble beginnings
of setting up a chroot jail with devfs.
This is fairly easy to handle as devfs
inherits the capability of using multiple
mountpoints simultaneously from Linux

VFS. To restrict
access to indi-
vidual nodes, you
can mount indi-
vidual subdirec-
tories of the
“/dev” hierarchy,
by using “devfsd.
conf” entries to
remove device
nodes from the
registry.

Conclusion
Devfs is a well-balanced concept, and
equally well-suited to eliminating the
chaos on the root disk.

As it has the properties of a filesystem,
devfs handles many aspects more
cleanly and elegantly than the older
“/dev” directory scheme with
its innumerable static entries. Despite
this, devfs obviously retains the UNIX
paradigm that “everything is a file”.

Although driver support is still missing
in some cases, drivers should be fairly
easy to program, as this article has
hopefully demonstrated. Symbolic com-
patibility links can be used to trick
applications and tools that cannot
handle the new device names into think-
ing that the old “/dev” system still exists.

The fact that distributions such as
Gentoo Linux and Mandrake 9.0 have
already moved to devfs, demonstrates its
practical use under Linux.

If other distributors like SuSE and Red
Hat decide to get on board the devfs
train, Linux developers around the world
would be forced to provide the new
devfs support for their programs. This
would remove the need for compatibility
code and additional links and so in turn,
allow devfs to demonstrate its true value
to the user. ■

45www.linux-magazine.com May 2003

KNOW HOWDevfs

[1] Devfs basics:“Documentation/file
systems/devfs/README”in the kernel
sources

[2] The source of all sources:
http://lxr.linux.no/source/fs/devfs/

[3] Manpage for devfsd:
http://www.fifi.org/cgi-bin/man2html/
usr/share/man/man8/devfsd.8.gz

[4] ISO image for Gentoo Linux:http://www.
gentoo.org/main/en/where.xml

[5] Devfs sources:
http://www.atnf.csiro.au/~rgooch/linux/

INFO

Figure 3: The new structure and the relatively small number of entries at the top level. Many of these
are simply links designed to ensure backward compatibility

Figure 4: Initial steps for creating a chroot jail with devfs

Stefan Klett still
studies computer
science at Karlsruhe
University. Currently
he is working on his
student thesis on
active networks
based on iptables.
Apart from his studies he is working in
network administration and program-
ming. He has already contributed to
several Linux publications.

TH
E A

UT
HO

R

