
The battle for the best possible solu-
tion for Linux is still currently raging; we
will be looking at the three most likely
candidates for our future systems. Like it
or not, we will need to look at some the-
ory before we start.

Heavyweights and Athletes
The concept of processes is one of the
most elementary aspects of UNIX. Older
operating systems used similar concepts,
such as tasks or jobs – a unit of work
that could be assigned resources by the
operating system. The operating system
guru, Professor Andrew Tanenbaum,
sums this up: a process is “A program
being executed”.

The implementation of processes
on Linux differs only slightly from the
classical UNIX process. The kernel uses
scheduling to define how long a process
can utilize a system’s resources.
However, scheduling algorithms can be
different depending on whether they
are used with Linux or UNIX.

The only way to create a new process
is the system call to “fork()” (or its older

variant “vfork()”), and this assumes that
a parent process is already running.

At first, the new process is a perfect
copy of the original, and this includes
its memory image, all its variables and
registers. Thus, the child process now
possesses a complete copy of the address
space used by the parent process – there
is no such thing as memory sharing,
with the exception of things like shared
memory of course.

The process ID is used to distinguish
between the parent and child process. A
system call to “fork()” returns a positive
integer to the parent process and “0” to
the child process.

In practical applications, the complete
copying of memory content on forking is
too complex, as it requires a series of
consecutive memory manipulation oper-
ations. This is why all modern UNIX
versions and Linux use a technique
called copy on write.

The child process still receives a few
page tables, however, these point to the
pages of the parent and are write pro-
tected for the child process. It is not until

All modern operating systems
use pre-emptive multitasking to
distribute a large number of

activities evenly across the processing
resources. There are two possible
approaches: processes and threads.
Processes are the traditional approach,
threads the more modern variant. Each
UNIX version handles processes the
same way, but when it comes to thread
handling, a large number of different
implementations become apparent.

Threads can simplify the development
of applications for parallel computing;
many critical applications that started
life on other operating systems make
heavy use of threading. Programming
languages such as Java are even based
on threads. This is why the subject
cropped up again within the Linux
context just a few years ago.

It is hardly surprising that hardware
manufacturers have taken the initiative
and actively encourage development.
After all, it is in their own interests to be
able to rebuff the claim heard in some
quarters that “Linux does not scale”.

Thread handling is critical to the

performance and parallelization

potential of a Linux application. The

following article describes how

threads and processes work, and

looks into current developments in

this field including the differing

libraries used to implement under

Linux and other Unixes.

BY WOLFGANG HETZLER AND

ULRICH WOLF

Processes and Threads – Background and Current Developments

Clone Wars

46 May 2003 www.linux-magazine.com

ThreadsKNOW HOW

Peter Doeberl,visipix.com

one of these processes attempts to write
to a page that copying really takes place.

The system call to “fork” occurs via a
function called “do_fork()”; the essential
element for storing information on
processes is a structure called
“task_struct”; this is referred to as the
process descriptor. All process de-
scriptors are linked by means of a double
linked list. Process data and its execution
are not separate entities. In contrast to
this, threads expect to be passed a
process as a data quantity, but spawn a
separate entity to execute a task.

Thus, a process can comprise multiple
threads, which are referred to as light
weight processes. The threads are a
special type of process and are also
referred to as Light Weight Processes
(LWP), which are an extension of the
UNIX standard.

Linux uses a system call to “clone()”
(“man 2 clone”) which is not available
in the Posix based UNIX standard. The
call works in a similar way to “fork”,
apart from the fact that “clone()” allows
the child “process” to share resources
with the calling process. Programmers
can use a bitmap, or so-called “sharing_
flags”, to specify what the child process
inherits. In earlier Linux versions this
bitmap comprised five bits, but it has
grown to 17 in version 2.5.

The most important bit is “CLONE_
VM”; if this bit is set, the new process
will share the address space of the origi-
nal process, thus producing an LWP, that
is a thread. The “CLONE_FS” controls
whether directories and the “umask” are
shared. If the “CLONE_FILES” bit is set,
file descriptors will be shared, and
“CLONE_SIGHAND” does the same for
the signal handler.

“CLONE_PID” is a bit more tricky; you
might assume that this would allow the
programmer to use the PID of the parent
process to create the child process. This
is not true. Only a process with a PID of
“0”, or so-called “idlestasks”, are
allowed to set this bit. Multiprocessor
systems provide an “idlestask” for each
CPU. The 2.5 kernel renames “CLONE_
PID” to “CLONE_IDLETASK “ to remove
any confusion.

Special threads that are typically
referred to as service threads, but occa-
sionally called kernel threads, cause
some confusion. The problem is that the
threads we have referred to so far are
implemented at kernel level and thus
often known as kernel threads. The
special type, that is the service thread,
spends its whole life in kernel space –
in contrast to normal processes – and
are thus normally used to perform a
few specific functions. The process we
referred to previously, with a PID of “0”
is a kernel thread of this type. Kernel
threads are created by the “kernel
thread()” function which uses “do
fork()” just like “clone()”.

Posix Threads – the Common
Denominator
Threads offer a whole range of advan-
tages in contrast to the more unwieldy
processes. Shared resources offer better
performance than would be possible if
the same task had to be performed by
multiple processes; complex interprocess

communication, using pipes for exam-
ple, is no longer needed. The threads
also allow for better utilization of multi-
processor systems, as the threads of a
single process can be distributed across
several CPUs.

Of course there are disadvantages –
synchronizing threads is extremely com-
plex. Finally, anything that uses “clone”
is specific to Linux and not portable. As
this problem is not new, but occurred
previously in the history of UNIX, it is
reflected in the Posix standardization
approach, in the IEEE 1003.1c standard
to be more precise, where the definition
of Posix threads are laid down.

Threads within the context
of libraries
Posix threads are defined for userspace
only. The specifications does not
describe how the kernel is supposed to
handle them. The obvious answer is to
write thread libraries that abstract from
the underlying system and thus provide
Posix compatibility.

Library functions of this kind provide
generic handling – specifics required by
the current UNIX system then become
internals. These functions map user-
space threads to kernel threads or
processes. The way this is performed is
one of the most important criteria on
which to judge a thread library. This is
often a confessional issue and not
exactly new. The following relationships
are possible: 1:n, m:n, and 1:1.

The 1:n approach refers to the strategy
which is typically most useful for the
UNIX systems that do not provide a suit-
able thread handling strategy of their
own. Threads remain at the user level of
a process that is responsible for hand-
ling. The kernel will only see this one
process. The m:n approach is a jack of
all trades as it uses kernel level thread
implementation on one side, and pro-

47www.linux-magazine.com May 2003

KNOW HOWThreads

Library Since Implemented in Mapping Model
NGPT 2001 User/Kernel n:m
NPTL 2002 User/Kernel 1:1
Gnu Pth 1999 User 1:n
Linuxthreads 1997 User/Kernel 1:1
Uthread 1998 User 1:n
Solaris Pthread 1991 User/Kernel n:m, later 1:1
AIX Pthreads 1993 User/Kernel 1:1

A Selection of Threading Libraries

Figure 1: The “AUTHORS” file in NGPT shows that
non-Intel systems, at least those produced by
IBM, were important to the developers

Pth is designed to be a portable library
for non-pre-emptive multitasking. It
offers a Posix compatibility mode and
maps userspace threads 1:n. The author
describes the theory this is based on in
great depth [4].

Five Intel and IBM programmers used
Gnu Pth as a starting point for develop-
ing Next Generation Posix Threads
(NGPT). As their employer placed a
great deal of emphasis on enhancing
scalability for multiprocessor systems,
this project uses an m:n mapping model.

The current version, 2.2.0, was
released in January 2003 and is
described as stable by IBM. There was
no documentation available when this
issue went to print, the source packages
contained only the documentation for
the original Gnu Pth project. However,
the website does give some hope with
the promise of white papers and man-
pages. To test NGPT, all you need is a
2.4.19 kernel, although it will need
patching. An installation guide is avail-
able from [5].

Red Hat to the fore
The NPTL (Native Posix Thread Library)
by Ulrich Drepper and Ingo Molnar –
both of whom work for Red Hat – is
again based on the 1:1 model, although
it does do without a main or manager
thread, instead resorting to kernel modi-
fications (new system calls that support
threads, an enhanced clone call, modifi-
cation of PIDs and signal handling,
thread local storage). All of this will be
available in Red Hat 8.1.

Drepper and Molnar are currently
working overtime on a new library, new
minor releases of the 0.x series appear
every week or at even shorter intervals
[6], [7]. NPTL currently requires a devel-
oper kernel from the 2.5 series, a current
Glibc2.3 (whose maintainer just happens
to be Ulrich Drepper). An installation
guide is available on the Web (although
this may already be obsolete by now)
[8]. Binary packages, which have been
down ported to 2.4 kernel, are included
with Red Hat’s 8.1 Beta (Phoebe). Both
of Red Hat’s top developers are gunning
to make their thread library the future
Linux standard.

There are benchmarks for NPTL,
NGPT, and the older Linuxthreads,
although they were not produced by an

independent institution. In the fall of
2002, Molnar and Drepper published
benchmark results indicating that their
own implementation is four times better
than Linuxthreads and twice as good as
NGPT. However, a stable NGPT has now
been released and its authors are claim-
ing better performance than NPTL. It
also remains to be seen what the new
Gnu Pth version will have to offer.

Thus, the race for which thread system
will be used in future Linux versions is
still on, at present. ■

vides additional library functions for
management purposes. Scheduling thus
takes place both at kernel and function
level. At user level m threads are
handled by n threads at kernel level.

The advantage of this complex
approach is that it allows multiprocessor
machines in particular to maximize
system load. Older thread libraries, such
as Solaris and Tru64 use this approach.
Developers can decide for themselves
how to map to kernel threads; in practi-
cal applications that number of kernel
threads tend to be an integer which is a
multiple of the number of CPUs.

A 1:1 relationship is easier to imple-
ment. The kernel, which supports
threading, assumes complete responsi-
bility for scheduling. The library is used
to ensure compatibility. Most thread
libraries adopt a 1:1 approach.

Since the mid 90’s there have been
several thread libraries, although only
Linuxthreads by Xavier Leroy, which is
implemented in the Pthread lib has been
able to make a lasting impression. While
developing Glibc2, Ulrich Drepper tied
threading functionality closely to the
standard library; thus threads have been
available on every Linux system for quite
a while now.

Current Thread Libraries
In its Linux implementation, the Pthread
library uses a modified 1:1 relationship,
where at least one main thread is pro-
duced; however “clone()” is used to
create all threads. The more interesting
Linux became for server farms and mul-
tiprocessor systems, the more vociferous
the critics of this thread library became..

Unsatisfactory signal handling, hierar-
chical relations between threads instead
of peering, imperfectly implemented
Posix compatibility and the fact that the
Pthread library threads – despite theoret-
ical objections – are visible in “/proc”,
were just a few of the criticisms levied.

Recently, three particularly active pro-
jects have emerged from a whole range
of approaches. Ralf S. Engelschall
launched Gnu Pth [3] way back in 1999,
and this project is now approaching the
transition from 1.4x to 2.0. Although this
is an official GNU project, the latest
betas and information are only available
from Ralf Engelschall’s own website
www.ossp.org, and on Freshmeat. Gnu

48 May 2003 www.linux-magazine.com

ThreadsKNOW HOW

[1] Bovet and Cesati,“Understanding the
Linux-Kernel”:
O’Reilly, ISBN 0569-00002-2

[2] J. Cooperstein,“Linux Multithreading
Advances”:
http://www.oreillynet.com/pub/a/
onlamp/2002/11/07/linux_threads.html

[3] Gnu Pth:
http://www.ossp.org/pkg/lib/pth/

[4] Portable Multithreading, Ralf S.
Engelschall:
www.engelschall.com/pw/usenix/2000/
pmt.pdf

[5] Next Generation Posix Threads (NGPT):
http://www.ibm.com/developerworks/
oss/pthreads

[6] Download of the current NPTL version:
http://people.redhat.com/drepper/nptl/

[7] Drepper and Molnar,“The Native Posix
Thread Library for Linux”: people.redhat.
com/drepper/nptl-design.pdf

[8] NPTL installation guide:
https://listman.redhat.com/pipermail/
phil-list/2002-November/000275.html

[9] NPTL/NGPT benchmarks by Red Hat:
http://people.redhat.com/drepper/
perf-s-100000-pro.pdf

INFO

After studying
computer science,
Wolfgang Hetzler
worked as a lecturer
for mainframe
computing.
Originally being
specialized in UNIX, he moved on to
Linux in 1993.Wolfgang was a
member of the teaching staff at the
computer science department of the
Technical University of Frankfurt,
Germany.You can contact him at:
het@het.gg.uunet.de.

TH
E A

UT
HO

R

