
you will probably not notice any big
surprises, although the meaning of rwx
has a slightly different emphasis.

r means you are allowed to look inside
a directory, w means you can create files
in the directory, and x means you can
change to the directory. The x privilege is
also required to open and execute files
inside the directory along with being
able to perform file operations with
them.

Sticky Directories
If you look at the /tmp directory:

pjung@linux:~> ls -ald /tmp
drwxrwxrwt 11 root root 6144 U

Oct 18 13:50 /tmp

You will note that the lessons in the
beginners’ manual do not cover all the
details you might need. Suddenly,
instead of the execute privilege for
others, there is that small t.

This special privilege is usually
referred to as the “sticky bit”, and it
really does make the directories sticky.
The files stored in a sticky directory can
only be deleted by their owners, even if
other users have write privileges set for
that directory.

Incidentally the right to change to the
directory has not disappeared: ls simply
displays a small t instead of the third x, if
this privilege has been set. If the x privi-
lege is not available, a capital T is
displayed instead.

Non-privileged users can neither store
nor delete files in directories they are not
permitted to change to. If the privileges
read rwxrwxrwT, only the user and
group for this directory will be affected
by the sticky bit.

What’s the big deal about the sticky
bit? Directories like /tmp that are used
for storing temporary files, should be
available for write access to all the users
on the system.

One of the first lessons that a
Linux newbie learns is the fact
that they can only access the

files and directories of a multiuser
system if they have appropriate
privileges. The owner (shortened to u for
“user”) of a file has certain privileges,
the members of the owner group
(“group”) have certain privileges, as do
all the other users of the system
(“others”). You can type ls -al file in the
command line to see what you can do
with the file:

pjung@linux:~> ls -al /bin/ls
-rwxr-xr-x 1 root wheel 48832 U

Feb 17 2000 /bin/ls

In our example, the owner of the file
/bin/ls (that is root, as is typically the
case for system tools such as ls) can
(“read”), “write” (that is modify), and
(“execute”) the file. This first group of
privileges, rwx, is followed by the details
for the members of the wheel group.
They are not allowed to modify /bin/ls
(instead of a w the middle privilege in
the group has been replaced by a -), but
they can read and execute the file.

The same applies to all other users of
the system, and in the case of the last x
bit, it is probably just as well – if the x
were replaced by a -, normal users would
not even be able to display directory
contents, as they would not be able to
run the ls command.

If you look at directory privileges:

pjung@linux:~> ls -ald /home
drwxr-xr-x 55 root root 2048 U

Sep 2 13:08 /home

Read, write, and execute file privi-

leges are explained in nearly every

Unix or Linux manual. There is more,

the notorious SUID bit, for example.

BY PATRICIA JUNG

Sticky, SUID, SGID – Special Privileges for Files and Directories

Talking Privileges

64 May 2003 www.linux-magazine.com

RightsSYSADMIN

66 May 2003 www.linux-magazine.com

RightsSYSADMIN

However, if everyone is allowed to
create files in the directory, and the privi-
leges rwxrwxrwx apply, everyone will be
able to delete any files in the directory
(Box 1) and that is definitely not what
the administrator envisaged.

Group Therapy
Special privileges are not restricted to the
third digit in the privilege triplet
“others”, they can also be applied to the
owner and group triplets. If a so-called s
bit is also applied to the group privileges,
it affects any files written to the
directory. No matter who creates the
files, they are always assigned to the
group that owns the directory. If group
members are not permitted to make
changes to a directory, ls reveals a capi-
tal S instead of a small letter.

Again this rather abstract concept can
be explained by a practical example: If
the system administrator assigns a
number of users to a group, she will
normally want to assign common file
access to these members. However, most
users will also be members of other
groups – even if these are personal
groups that only have one member, or
simply the users group:

pjung@linux:~> groups
users uucp dialout audio video

The first group that the groups command
outputs is the so-called primary group.
The system adminstrator specifies the
primary group when creating a user
account; the group ID (in this example
the group ID for users is 100) is defined

in the entry for the user account in
/etc/passwd:

pjung@linux:~> grep pjung /etcU
/passwd
pjung:x:500:100:Patricia Jung:U
/home/pjung:/bin/bash

The /etc/group file keeps track of any
group memberships:

pjung@linux:~> grep pjung /etcU
/group
uucp:x:14:uucp,fax,U
root,fnet,pjung
dialout:x:16:root,pjung
audio:x:17:root,pjung
video:x:33:pjung

If a user now creates some files, the sys-
tem will take care of assigning them to the
user’s primary group. If the user wants to
assign these files to a different group, she
must use the chgrp command to do so.
This is somewhat laborious, and not
really practical within a working group, so
the administrator will tend to assign the
SGID (“Set Group ID”) bit to the parent
directory to solve the problem (Box 2).

Under a Foreign Flag
The SUID bit, that is the s bit that is set
in the owner privileges triplet, is an
exception here as it does not apply to the
directories, but exclusively to executable
files. It ensures that Linux will not run
the program with the rights of the user
that calls it, but with the rights of the
file’s owner.

Thus, the passwd program, which is
used for changing passwords, effectively

ls: You can simply type ls (“list”to run the
command /bin/ls, because the /bin directory
is defined in your search path. If you addition-
ally specify the -a flag, ls will also list hidden
files.The option -l forces a “long list”, which
additionally includes the privileges. -d tells ls
that you are not interested in the content of
the directory passed to the command, but in
the directory itself.
grep: This command line program searches
for string (or to be more precise, a regular
expression) in a file (or in the standard input
data). If you do not change its default behav-
ior by supplying additional options, the
program outputs any lines containing the
search string.

GLOSSARY

In the following example, a non-privileged user assumes root privileges using the su command.
Using root privileges she creates a directory called foo with the mkdir command and allows all
users read, write, and execute privileges for the new directory. Now root uses the touch command
to create a new (empty) file called Hello which only root can write to as the ls -al command shows.

pjung@linux:~> su
Password: root password
mkdir foo
chmod a+rwx foo
ls -ald foo
drwxrwxrwx 2 root root 4096 Oct 18 14:09 foo
touch foo/Hello
ls -al foo/Hello
-rw-r--r-- 1 root root 0 Oct 18 14:09 foo/Hello
exit
As the non-privileged user has write access to the foo directory, she can delete Hello (following a
prompt), although root did not actually assign write privileges for the file to her:

pjung@linux:~> rm foo/Hello
rm: Remove write-protected file "foo/Hello"? y
pjung@linux:~> ls -al foo/Hello
ls: foo/Hello: File or directory not found
Now, if root had applied a sticky bit to the foo directory…

pjung@linux:~> su
Password: root password
chmod a+rwx,o+t foo
ls -ald foo
drwxrwxrwt 2 root root 4096 Oct 18 14:09 foo
touch foo/Hello
ls -al foo/Hello
-rw-r--r-- 1 root root 0 Oct 18 14:22 foo/Hello
exit
… this would never have happened:

pjung@linux:~> rm foo/Hello
rm: Remove write-protected file "foo/Hello" ? y
rm: Remove (unlink) "foo/Hello" not possible: Operation not permitted

Box 1: The difference between rwx and rwt

67www.linux-magazine.com May 2003

available for write
access to prevent all
kinds of mischief
with other users
passwords. If the
passwd program
were to be run with
the callers privi-
leges, as is normally
the case, it would
only be able to
modify files for
which the user had
write access, and
that definitely
excludes the pass-
word file.

The SUID bit can
help solve this prob-
lem by assigning
root privileges to

the passwd program while it is running,
thus allowing it to change passwords.

The SUID bit is as dangerous as it is
useful. If a program running with SUID
privileges has not been programmed
carefully, it may offer malevolent hackers
an opportunity to attach a system.

It might even allow a process run-
ning with SUID privileges to execute
additional programs with the same privi-
leges, or even allow a user access to files

that should not be visible to them. For
security reasons it is a good idea to be
careful when using the SUID bit. In the
case of shell scripts, you should not use
it at all.

The same principle that applies to user
privileges also applies to the group privi-
leges. If you set the SGID bit for
executables, the processes will be run
with the privileges of the owner group,
the only condition being that the user
must have execute access privileges for
the file in question.

Setting Special Privileges
Whether you are permitting or removing
rwx or s and t – the chmod (“change
mode”) is the tool to look for. Arithmetic
operations +, - and = and apply as they
do to read, write and executable
privileges: chmod u-s executable removes
the SUID privilege from a program,
chmod g+xs directory assigns the SGID
bit and the right to change directory to
the owner groups, and chmod o=rwxt
directory sets the privileges for others to
rwt.

If the underlying x bit has not been
assigned, ls will indicate this by display-
ing a capital letter S or T.

Of course special privileges can be
assigned using octal notation. Just as the
read privilege, r, is represented by a
value of 4, the write privilege, w, by a
value of 2, and the x bit by a 1, the
numeric equivalents are as follows:
• 1 for the t bit (sticky bit),
• 2 for the SGID bit and
• 4 for the SUID bit.
To prevent conflicts with rwx, they are
not added to the sum of the user, group
or other privileges, but form a fourth and
separate value: thus chmod 1777
directory will assign rwxrwxrwt to
directory, just like chmod u,g=rwx,o=
rwxt. The first number represents the
sum of the special privileges, that is 1 for
t in this case, the second digit represents
the sum of the “normal” user privileges
(r+w+x=4+2+1=7), the third the
group privileges, and the last number
represents other privileges.

To apply the SGID bit (rwxrwsrwt),
you can issue the chmod 3777 command.

The privileges described earlier as
applying to /usr/bin/passwd (r-sr-xr-x)
were most likely assigned using chmod
4555 /usr/bin/passwd. ■

uses root privileges, even if it is called by
a non-privileged user:

pjung@linux:~>
ls -al /usr/bin/passwd
-r-sr-xr-x 1 root bin 8735
Feb 17 2000 /usr/bin/passwd

The reason: The password file needs to
be edited to change a password.
However, this file is not globally

The user pjung can be a member of multiple groups. If she creates a directory (called music) in our
example, it will automatically be assigned to her primary group users.

pjung@linux:~> mkdir music
pjung@linux:~> ls -ald music
drwxr-xr-x 2 pjung users 4096 Oct 18 15:23 music
Even she now assigns music to the audio group instead, the system will still assign the files cre-
ated there, such as wish.txt to the primary group:

pjung@linux:~> chgrp audio music
pjung@linux:~> ls -ald music
drwxr-xr-x 2 pjung audio 4096 Oct 18 15:23 music
pjung@linux:~> touch music/wish.txt
pjung@linux:~> ls -al music/wish.txt
-rw-r--r-- 1 pjung users 0 Oct 18 15:26 wish.txt
The SGID bit needs to be for the directory music to ensure that any files created here will auto-
matically be assigned to the audio group.This does not affect the ownership of any existing files:

pjung@linux:~> chmod g+s music
pjung@linux:~> ls -ald music
drwxr-sr-x 2 pjung audio 4096 Oct 18 15:26 music
pjung@linux:~> touch music/content.txt
pjung@linux:~> ls -l music
insgesamt 0
-rw-r--r-- 1 pjung audio 0 Oct 18 15:29 content.txt
-rw-r--r-- 1 pjung users 0 Oct 18 15:26 wish.txt

Box 2: Directories with and without SGID bits

Figure 1: Konqueror does not mention the SUID bit in its bubble help –
you need to access the “Properties” dialog box via the drop-down menu

SYSADMINRights

