
replacement for CVS in the open source
community”. In other words, it is
designed to implement all of the
functionality of CVS, with a familiar
interface, while fixing its design
flaws, and offering much improved
functionality.

Unusually for an open source project,
Subversion has had a number of full-
time developers employed to work on it
since the project’s inception. CollabNet
is paying the salaries of several
developers, and holds the copyright on
code in the project. The code is release
under a BSD/Apache style licence.

Subversion is alpha software – this
means that it is considered acceptable
for public release, but is still in active
development. Features are still being
finished or refined, and bugs are found
and fixed all the time. For those who are

Most open source developers
have, at some stage, come
across CVS. It is the de facto

standard SCM (Source Code Manager)
on free software projects. As such, it has
a huge user base, and has earned a repu-
tation as a good piece of software.

The primary goal of the Subversion
project is “to build a compelling

Subversion [1] is a free source code manager and version control system intended to replace CVS. We explain why you

should consider changing to this new system and the pitfalls you may find. BY DAVID NEARY

Subversion

Building a better CVS

59www.linux-magazine.com May 2003

SYSADMINSubversion

worried about using alpha grade soft-
ware to house their projects, however,
it’s worth noting that Subversion’s devel-
opers have confidence in it – the project
has been self-hosting for a year and a
half, with no data loss.

A better CVS
For those who have used CVS for years
with no problems, you might be asking
yourselves what I meant by design flaws
in the last section. CVS has a number of
problems, primarily caused by its
dependency on the RCS file format for
versioning files. The issues addressed by
Subversion include the following.

Atomic commits
If you are making a change to a source
code repository, and you commit that
change, one of the fundamental princi-

Dave Neary dis-
covered Linux in 1997,
and, apart from
a flirtation with
FreeBSD, has never
looked back. He is
an occasional con-
tributor to the GIMP, and is listed
as co-author of Gnect, one of the
gnome games.
He lives and works in Lyon.

TH
E A

UT
HO

R

60 May 2003 www.linux-magazine.com

SubversionSYSADMIN

ples of both database and version control
systems is that either your entire change
is accepted or your entire change is
rejected. This behaviour is called atomic-
ity (this is the A in ACID). In CVS, this is
not guaranteed.

Atomicity is only guaranteed on a file-
by-file basis. This means that if you are
committing changes to 10 files, and
someone else starts a commit at roughly
the same time as you which changes the
8th file in your list, the changes for the
first 7 files in your change get accepted,
and the rest gets rejected. After this
happens, it is very likely that the
repository will be in an inconsistent state
until you resolve the conflict you’ve just
found and commit the rest of your
change.

In addition, because CVS has no way
of grouping changes to a number of files
together, it isn’t even possible to revert
your partial commit while ensuring that
the successful commit which happened
at the same time doesn’t get reverted as
well.

An illustration might help explain
the problem. Tom and Dick are working
on the same source code tree which
has 3 files in it – a.c, b.c and c.c. By coin-
cidence, Tom and Dick try to commit
changes at the same time. They both
check that they are up to date with the
repository, and then at the same time
they try to commit their changes.

While Tom is writing his changes to
a.c, Dick starts writing to b.c. Before Dick
has finished, Tom starts writing to c.c.
Dick’s commit finds that Tom has locked
c.c, and informs him that his c.c is no
longer up to date. Dick does an update to
get Tom’s changes, and finds that there’s
a conflict in c.c which he has to resolve
(perhaps in conference with Tom).

Meanwhile, Harry checks out the
sources and has Tom’s changes to a.c
and c.c, and Dick’s change to b.c, but not
Dick’s change to c.c. He tries to build the
project, and finds that he can’t. In brief,
until Tom and Dick resolve Dick’s con-
flict, neither Tom, Dick or Harry has a
working copy of the source code.

Subversion implements atomic com-
mits. When you commit to a Subversion
repository, you start a transaction with
the repository, and if any part of the
commit fails, the transaction is rolled
back and the entire commit is rejected.

Files & versioning history
CVS has no way to rename files and keep
versioning history. Renaming “file1” to
“file2” in CVS means doing the
following:

$ mv file1 file2
$ cvs remove file1
$ cvs add file2
$ cvs commit

This creates a new “file2” with no record
of a common history with the old “file1”
(which is now stored in the Attic).

In Subversion, the above operation is
performed by

$ svn move file1 file2
$ svn commit

and the common history of “file1” and
“file2” is conserved.

In addition, Subversion has dramati-
cally increased the things that can be
versioned. Directories and file metadata,
as well as renamed or copied files, all
have their own versioning. This means
that not only can you move and copy
files, you can move and copy directories
too.

These copies are very cheap, because
they’re lazy copies – the first copy is sim-
ilar to a hard-link to a particular version
of the directory. As you change files on
the branch, only those files you change
get copied onto the branch. This means
that making and maintaining branches is
a cheap operation, both in terms of space
in the repository and in terms of time.

Branching and tagging
When we tag a repository in CVS, every
file in the directory tree we are tagging is
“stamped” with the tag. Likewise, when
we are branching, the branch tag is
created in each file affected. This means
that branching and tagging are expensive
operations for big repositories and direc-
tory trees, which has a cost proportional
to the number of files being branched or
tagged.

Subversion has made both branching
and tagging constant time operations. In
fact, Subversion makes no distinction
between a tag and a branch. Both of
these are implemented simply by copy-
ing the directory you are tagging, and
have a cost the same as any other copy.

Logically there is no difference
between branching and tagging – a tag is
a copy of a group of files at a certain
point of time, and a branch is a copy of a
group of files at a certain point in time
which can be changes independently
of the rest of the tree. In brief, a tag
is a branch that we don’t change. In
Subversion, this is the case. If you
change a file in a tagged tree and com-
mit, the tag suddenly becomes a branch.

In addition, requesting a file off a
branch in CVS requires time proportional
to the number of revisions since the
branch point with the HEAD branch,
plus the number of revisions made in
HEAD since the branch point. RCS files
store the latest revision in HEAD as full
text, and any time you request the text of
another version, it has to be constructed.
This means, for a file on a branch,

Figure 1: Screenshot of Mozilla pointing at the Subversion repository

Client-server communication
When we change a file locally when
using CVS, and we want to know the dif-
ference between our changed copy and
the repository version, the entire file is
sent to the server, the diff is done there,
and the result is sent back to the client.
Similar operations are performed for all
operations involving locally modified
files, such as updates, commits and
merges. This means that the cost of these
operations is proportional to the size of
the locally modified files, rather than the
size of the change.

The philosophy of Subversion is differ-
ent. The reasoning is that disk space has
become a more plentiful resource than
bandwidth in recent years, and therefore
we should minimise use of the latter,
even if there is a cost in the former.
When we update a Subversion reposi-
tory, a copy of the latest repository
revision is made locally, as well as being
patched into our local copy.

Because of this, diffs are sent in both
directions by Subversion. That is, if we
modify a local file and commit, only the
differences between our local file and the
most recent revision we have locally are

sent to the server, meaning a lot less use
of bandwidth.

In addition, because we have a pristine
copy of the repository locally, there is a
clear distinction between server opera-
tions and local operations – for example,
finding out which local files have been
modified, and the changes we have
made to those files, are operations which
can be performed without any access to
the server. In fact, the cost of subversion
operations in general is proportional to
the size of the change, rather than the
size of the repository or the size of the
files being changed.

Subversion’s design –
Repository versions
Subversion does not version files like
CVS. Instead, it versions the repository
as a whole. When you commit to the
repository, a transaction is started, the
changes you make are added to the
repository, and if no problem occurs, the
new repository with your changes is
committed with its version number.

There are a number of advantages of
this scheme over the CVS scheme. The
most important is that this is the mecha-
nism which is used to give atomic
commits. It also gives a way to get a
group of changes which were made at
the same time (a changeset) very easily –
you just get the difference between two
successive repository versions.

Apache as a server
Subversion uses the WebDAV and DeltaV
extensions to the HTTP protocol for
client/server communications. In prac-
tice, this means that it uses Apache 2
with a specialised module to do server
operations, and the client talks standard
HTTP/WebDAV. This means that on the
server side, Subversion profits from a
stable and well-tested network server.

Using Apache also gives several other
useful features for free – client/server
authentication is done using Apache’s
htpasswd mechanism, secure client/
server communications are provided by
modssl, and wire compression is sup-
ported with mod_deflate. In addition,
Subversion repositories get a web inter-
face for free – just point your browser at
the root directory of the repository.

For those of you who are worried
about having to install and administer

reverting all changes from HEAD to the
branch point, and then applying all the
changes made on the branch to arrive at
the complete file as we see it.

Because of this, diffs, branch switches
and check-outs are all roughly propor-
tional to the number of revisions on a file
in CVS when those operations are on a
branch. All branch and tag operations in
Subversion are constant time.

Binary diffs
Storing binary files in CVS is something
of a nightmare. Because the RCS file
format is essentially text based, any
changes to a binary file resulted in the
replacement of the old file. If the file is a
100K image that gets changed for every
release, like the GIMP splash screen, then
that one file ends up taking up many
megabytes of space in the repository.

Subversion uses a diffing algorithm
called Vdelta to provide efficient binary
diffing, meaning that storing postscript
or pdf documents which change
frequently doesn’t pose the same prob-
lems as it does for CVS. The diffing
algorithm is also extremely efficient on
text only files.

61www.linux-magazine.com May 2003

SYSADMINSubversion

Figure 2: Subversion design, copyright Brian Fitzpatrick, published under the Apache licence

commandline
client app

GUI client app

Client Library Working Copy
Management

Library

Repository Access

DAV Local
Ye Olde
Internet

Apache

mod_DAV

mod_DAV_SVN

Subversion Filesystem

Client
Interface

Filesystem
Interface

62 May 2003 www.linux-magazine.com

SubversionSYSADMIN

Apache to have a remote
subversion server, there is
also a lightweight, stand-
alone server included with
Subversion. This has not
been extensively tested so
far, but supports the same
functionality as a CVS
pserver.

Modular design
Subversion has been
designed from the start to
be a client-server applica-
tion. It is a set of libraries,
each of which has a particu-
lar function, and a number
of command line utilities. It
has a very modular design.

Unlike CVS, Subversion has one
library which performs all client opera-
tions, which means that writing
graphical clients does not mean bolting
a GUI onto the existing command
line interface. Since the API is all in
one library, a graphical client calls the
same functions that the command line
client does.

Subversion currently has two graphi-
cal clients – a wxWindows based client
called rapidSVN and a gtk+ based client
written in python called gsvn.

A Few Words of Warning
Subversion isn’t perfect – bugs are found
& fixed every day, and there’s a reason
why it’s called alpha software. There
are several major problems outstanding
which you might come across which
have workarounds. Unlike some prod-

ucts, the Subversion project is upfront
about these problems – they even have a
page [5] dedicated to telling you about
the worst problems it has.

Some of the reasons why you might
not want to switch all your sources
to Subversion straight away are listed
below.

Interrupted check-outs
Currently if you are checking out files
from a repository there is no facility to
resume the checkout where you left off,
as with CVS. However, this problem is
scheduled for resolution before 1.0. If
you don’t have many users checking out
sources over 56Kb modem connections
that go down all the time, this probably
isn’t a major issue.

CVS to Subversion migration
Converting existing CVS repositories

to Subversion while keeping ver-
sion history is something which
is more or less required. There is
such a tool, but it is currently
incomplete.

Because of CVS’s file-based
versioning, it is very difficult to
migrate branches and tags,
which are implemented as
copies, to Subversion. Support

for CVS should be complete
before a 1.0 release, but this is
a difficult problem.

Getting started
The easiest way to see
the benefits of Subversion is
to use it. Getting started is a
little tricky for the moment,
but as the technologies used
become more commonly used,
this will certainly get easier.

Subversion client
To get started, you will need
a subversion client, and
the ability to create your
first repository. The database

which Subversion uses to store your
files in the repository is Berkeley DB
version 4 [6].

For Debian users, Subversion is
included in unstable. For Red Hat and
Mandrake (and other RPM based distri-
butions), there are RPMs, available off
the project download page. For everyone
else, you can build from sources. The
latest release source tarballs are avail-
able on the Subversion site [7].

The latest stable release of Subversion
is version 0.17 and it requires DB 4.0.14.
To build from sources, look at section II
of the install guide [8]. The basic pro-
cedure is the usual ./configure, make,
make install.

If you want to build from the latest
sources, the requirements are a little
more complicated – see the install guide
for details.

Setting up a repository
Once you have the binaries installed,
you will want to set up your first reposi-
tory. Detailed instructions on how to do
this are available in the README
document in the project sources [9]. To
create a repository, just run the following
command:

svnadmin create /path/to/repos

/
trunk
project1
project2

branches
project1
// Create project1 branches here

project2
// Create project2 branches here

tags
project1
// Create project1 tags here

project2
// Create project2 tags here

Listing 1: A recommended
directory structure

$ mkdir tmp
$ mkdir tmp/trunk tmp/branches tmp/tags
$ mkdir tmp/trunk/project tmp/branches/project tmp/tags/branches
$ cd tmp
$ svn import file:///repos_path . -m "Initialise directory structure"

Listing 2: Creating a directory structure

Figure 3: A typical subversion session with stuff like svn status, update,
proplist and commit

63www.linux-magazine.com May 2003

SYSADMINSubversion

Apache 2 & Subversion
To get a Subversion network server up &
running on your machine, you will first
need to have Apache 2.0 [9] installed,
including APR and APRutil. In addition,
you’ll need to install Neon [10], which
is the implementation of the WebDAV
and DeltaV which the Subversion client
uses to talk to Apache.

The latest stable release of Subversion
at the time of writing requires Apache
2.0.44 (or a pre-release) and Neon
0.23.5.

Untar Neon into the svn source tree
in the neon directory, and configure
--with-apxs=/path/to/apxs. Make sure
that you compile Subversion without
debug flags, unless you also have a
debug build of apache – otherwise the
subversion module won’t load up.

After building and installing, make
the necessary changes to Apache config
file to add the mod_dav_svn module,
and to indicate the location and access
method for the repository, and then start
apache.

Now if you point your web browser at
http://localhost/repository (or whatever
location you told Apache), you will see
your source tree. If you want to restrict
access to the source code, or enable
secure tunnelling, you should consult
the documentation for Apache 2.

Learn Subversion in 3
minutes
Below is a short list of the most common
subversion commands along with a
description of what they do. A slightly

more detailed list is available in the
Subversion Quick Guide [11], and a com-
prehensive description of all commands
available in Subversion is available in
the Subversion book [3].

Conclusion
Subversion is a natural successor to CVS.
It has come very far in just two and a
half years of development, and is stable
enough to be used for source projects as
a direct replacement for CVS.

There are some obstacles to it’s wide-
spread adoption, one of which is that the
client software for subversion is not yet
as widely available as the CVS client. In
addition, if you already have your
sources in a CVS repository, migration to
Subversion isn’t perfect yet.

However, as we have seen here, it has
an impressive feature set, and is very
well tested at this stage. It is fast
approaching beta status, and is getting
more and more polished.

If you are planning on importing
sources into a new repository, and
you were thinking of using CVS, Sub-
version might be just the program you
should consider. ■

Make sure that you have permission to
write to the directory /path/to/repos, and
that the directory exists.

The Subversion developers recom-
mend that you set up an initial directory
structure (which you can always add to
or change later) to put in place a branch-
ing and tagging system. Keeping track of
where you made a certain tag or branch
can be tricky without a system. Setting
up a basic structure in all your reposi-
tories to make this easier is probably a
good idea.

There are several ways to set up this
structure, the easiest is to create the
directory structure yourself as in Listing
2, and use svn import to import the lot
into the repository in one go.

Once you have your basic filesystem
structure in place, you can now import
your sources into the repository, and
you’re ready to go:

$ cd project
$ svn import file:///repos_pathU
/trunk/project . -m U

"Import project sources"

Check them out to see that all has gone
well:

$ svn co file:///repos_pathU
/trunk/project svn_project

And we can remove our old project
sources, and use subversion:

$ rm -rf project
$ mv svn_project project

Command Description
co/checkout Check out a copy of the source code to a working copy.
ci/commit Commit your local changes to the repository
up/update Update your working copy to reflect changes to the repository since your last update
status New in Subversion – Summarise your local changes, without talking to the repository,

or summarise resources that are out of date without updating.
add, remove/rm Add or remove files to/from version control.
copy/cp, move/mv New in Subversion – Copy/move a file or directory to another file, keeping old version

history.
merge Equivalent to cvs update -j - merge changes from another location into the working

copy.
switch Change your working copy to use another branch
diff Get differences between your working copy and the last updated sources (new to

Subversion), or the current repository
log Show log entries for resource
propadd, proplist, propdel, propview New to Subversion – Manipulate metadata on a file.You can associate arbitrary data

to any file or directory. A certain number of metadata keys have a special meaning (for
example, svn:mime-type).

Common Subversion commands

[1] Subversion home page:
http://subversion.tigris.org

[2] CVS home page:
http://www.cvshome.org/

[3] Subversion book:
http://svnbook.red-bean.com/book.html

[4] Subversion sources:
http://svn.collab.net/repos/svn/

[5] Inconveniences page: http://subversion.
tigris.org/inconveniences.html

[6] Berkeley DB home page:
http://www.sleepycat.com/

[7] Subversion downloads: http://subversion.
tigris.org/servlets/ProjectDocumentList

[8] INSTALL: http://svn.collab.net/repos/svn/
trunk/INSTALL

[9] README: http://svn.collab.net/repos/svn/
trunk/README

[10]Apache2 home page:
http://httpd.apache.org/

[11] Neon home page:
http://www.webdav.org/neon/

[12] Quick Reference:
http://subversion.tigris.org/files/
documents/15/177/foo.ps

INFO

