
400Hz and b with 480Hz, and then create
wav files for the two terms on the left
and right of the equals sign. The first
term is defined by:

(wfct 400Hz 30ms; wfct 480Hz U

30ms) | wmix -s - -

Note that the -s flag is used to divide by
the number of input files. We now
require 1/2(a+b)=440Hz and 1/2(a-b)
=40Hz for the second term, and can use:

(wfct 440Hz 30ms; wfct 20Hz U

30ms) | wmix -m - -

to generate this. The parameter -m is
used to perform multiplication. A quick
look at Figures 1 and 2 shows that they
really do look identical.

What does it do?
The winf tool displays header infor-
mation for wav files. If you do not
specify any options, only the length, the
sampling frequency, and the resolution
(in bits) of the file is output. This can be
quite interesting.

Imagine that you have just down-
loaded your favorite tune from the Web –

you could then use winf to find out more
about quality of the recording. wav files
in particular tend to be low quality –
using slower sampling rates or a lower
resolution to avoid using huge amounts
of storage space. Let’s use our cosine
wave as an example, and type:

wfct -p90deg 400Hz 1s U

-ocosinus.wav; winf cosinus.wav

to display the required information on
screen:

cosinus.wav : time 0:01.00 s (U

11025 values), sampling U

11025 Hz 8 bits

It’s not really surprising to see that the
sampling frequency is set to 11025 Hz by
default, that is, if you do not use the
option -s to change this. If you leave out
the -b flag, the resolution defaults to 8
bits.

However, the -s flag for the winf
program, which displays some statistics,
may be more interesting. The output
shows both minimum and maximum
values and the volume for the file,
expressed as a percentage of the sine

We generated various wave-
forms (sine, triangular,
rectangular, sawtooth, and

noise) while working with the wfct pro-
gram, however, there is one option that
we have completely ignored so far: the
parameter -p that allows you to define
the phase shift for the wave you are
creating. For a better understanding of
phase shifting, let’s think back to a sim-
ple formula from our technology lessons:
as you know, sin(x + 1/2PI)=cos(x). If:

wfct 440Hz 10ms

creates a sine wave, you can use:

wfct -p90deg 440Hz 10ms

to create a cosine wave (note that 1/2PI
corresponds to 90° – , however, you can
also use a radian -p1.570796rad to define
1/2PI=1.570796). Now, remembering
those addition theorems:

1/2(sin a + sin b)=sin(1/2(a+b)U
)x cos(1/2(a-b))

you might be interested in verifying this
graphically. To do so, replace a with

84 May 2003 www.linux-magazine.com

In our February issue we took a detailed look at typical fields of application for

WaveTools, particularly the wfct, wflt, wmix, and wplot programs. In this issue

we will be looking at the remaining tools and demonstrating their capabilities.

BY VOLKER SCHMITT

WaveTools

Canutations

WaveToolsLINUX USER

Figure 1: (wfct 400Hz 30ms; wfct 480Hz 30ms) |
wmix -s - - | wplot | display

Figure 2: (wfct 440Hz 30ms; wfct -p90deg 40Hz
30ms) | wmix -m - - | wplot | display

Figure 3: (wfct 440Hz 1s; wfct 439Hz 1s) | wmix - - |
wplot | display

wave. Were you aware that overlaying a
sine and a cosine wave will retain 99.4%
of the volume of the sine wave, whereas
overlaying sin(x) with sin(x+3/4PI)
drops down to 76.5% of the sine wave’s
original volume (cf. Listing 1)?

Didn’t think so. But just take a look at
the wave to find out why.

The result of overlaying waves with an
almost identical frequency is also inter-
esting. There is some interference (Figure
3 shows a 440 Hz and a 439 Hz wave
overriding each other once a second),
and thus the sum of these two waves will
not produce the volume of the sine wave.

(wfct 440Hz 1s; wfct U

439Hz 1s) | wmix - - | winf

returns 70.5% of the sine wave volume.

The Microscope
The wview program can display wav files
interactively on-screen. You can use the

up and down arrows to change the inter-
val for the data to be displayed. The left
and right arrow keys allow you to scroll
the selection window along the time
axis. Additionally, you can use [PgUp]
and [PgDn] to zoom the display. As the
program runs in SVGA mode, you need
to press [Q] or [Ctrl+c] to quit.

Division
As an extra bonus, this issue’s subscrip-
tion CD includes the winv program. This
program is not part of the WaveTools col-
lection; I wrote it myself to add division
facilities to the addition and multiplica-
tion facilities provided by the wmix
program. The range of amplitude values
is between -1 and 1. Inverting these val-
ues would place them out of range.
Thus, winv normalizes its output by
restricting peak values to 1.

The subscription CD includes the stati-
cally linked winv binary. You can copy
this file to /usr/local/bin (cp …/winv

/usr/local/bin). The program supports all
the important output facilities provided
by the other WaveTools. To test winv
reapply the mathematical formula used
for calculations with complex numbers;
the formula is shown below.

We set n=4 and chose an angle of 100
Hz. We then created the left side of the
equation as follows:

(wfct 100Hz 30ms; wfct U

200Hz 30ms; wfct 300Hz 30ms; U

wfct 400Hz 30ms) | wmix - - - -

and used winv as the expression in the
denominator of the equation, which was
then created as follows:

(wfct 250Hz 30ms; wfct U

200Hz 30ms; wfct 50Hz 30ms | U

winv) | wmix -m - - - | wflt -n

Finally, we used wflt -n to normalize the
results – this reverted the normalization
performed by winv. If we now look at
the expression on the left in Figure 4 and
compare it with the expression on the
right in Figure 5, we can say that the
equation more or less worked.

However, the somewhat angular
appearance of these figures means that
there is some numeric instability. To
resolve this issue we can up the sam-
pling rate and resolution to 16-bit using
the -b16 option. The result shown in Fig-
ure 6 is far more satisfactory and can no
longer be distinguished from Figure 4. ■

85www.linux-magazine.com May 2003

LINUX USERWaveTools

Figure 4: (wfct 100Hz 30ms;wfct 200Hz
30ms;wfct 300Hz 30ms;wfct 400Hz 30ms) |
wmix - - - - | wplot | display

Figure 5: (wfct 250Hz 30ms;wfct 200Hz
30ms;wfct 50Hz 30ms | winv) | wmix -m - - - | wflt
-n | wplot | display

Figure 6: (wfct -b16 250Hz 30ms;wfct -b16 200Hz
30ms;wfct -b16 50Hz 30ms | winv) | wmix -m - - - |
wflt -n | wplot | display

volker@mouse: (wfct 440Hz 1s; wfct -p90deg 440Hz 1s) | wmix - - |
winf -s

-standard-input- : time 0:01.00 s (11025 values), sampling 11025 Hz
8 bits
Amplitude (x[n]) : min = -1.00000 mid = -0.00931 max = +0.98438
Step (x[n+1]-x[n]): min = -0.25781 mid = +0.15814 max = +0.25781
Zero Values : n = 880 n/sec = 880.0
Extreme Values : n = 880 n/sec = 880.0
Standard Deviation (Volume): s = 0.70295 = 99.4 %

volker@mouse: (wfct 440Hz 1s; wfct -p135deg 440Hz 1s) | wmix - - |
winf -s

-standard-input- : time 0:01.00 s (11025 values), sampling 11025 Hz
8 bits
Amplitude (x[n]) : min = -0.77344 mid = -0.00779 max = +0.75781
Step (x[n+1]-x[n]): min = -0.20312 mid = +0.12194 max = +0.19531
Zero Values : n = 880 n/sec = 880.0
Extreme Values : n = 880 n/sec = 880.0
Standard Deviation (Volume): s = 0.54108 = 76.5 %

Listing 1: winf Output

[1] WaveTools: http://tph.tuwien.ac.at/
~oemer/wavetools.html

INFO

