
to the transfer rate. This phenomenon
affected both the sender and the receiver
of the data.

These fluctuations occurred periodi-
cally within a timespace in the region of
several hundred seconds. Figure 1 shows
an example of the phenomenon. This
effect only occurred when the usleep
function was called to limit the transfer
rate, but not if the total network band-
width was used.

A small test program running outside
of the kernel and using memcpy to copy

data to memory showed a similar reac-
tion. The rate at which this program
copies is also configurable via usleep.
Calling the same program on a system
with a single processor kernel showed a
minimal CPU load (slightly above 0 per
cent) despite copying 80 Mbyte/sec…

Where’s Harvey?
This led us to suspect that our program’s
processes might have escaped monitor-
ing by, and might be partly invisible to,
the kernel. To verify this hypothesis we

The Department of Technical Com-
puter Science at the University of
Heidelberg develops data parsing

systems for planned large scale applied
research into elementary particles and
heavy ions, where Linux clusters can
comprise 1000 nodes.

Within this framework one working
group has been looking into efficient net-
work communication mechanisms, to
avoid processor load during data transfer
as far as possible. The group was partic-
ularly interested in minimal network
transfer overhead using unmodified net-
work card drivers. With this aim in
mind, the authors of this article devel-
oped a small footprint kernel module
capable of transferring data from a pro-
gram across a network without using a
protocol like TCP/IP.

Inexplicable Fluctuations
This module was intended to control the
CPU load for multiple data transfer rates.
But our measurements showed an inter-
esting phenomenon on a dual processor
system: despite constant transfer rates
system load tended to deviate between 0
per cent and an upper limit proportional

Most CPU load monitors, such as top

and xosview access the Linux kernel’s

/proc filesystem to try and determine

the correct value. However, this inter-

face can deliver incorrect values if

certain conditions occur. We explain

why and the patch described in this

article resolves this issue.

BY ARNE WIEBALCK,

TIMM M. STEINBECK

AND VOLKER LINDENSTRUTH

Recognizing and Resolving CPU Load in the Kernel

Fluctuating Processors

46 June 2003 www.linux-magazine.com

CPU MonitoringKNOW HOW

Figure 1: Inexplicable fluctuations of processor load and throughput while transferring data across the
wire between two SMP systems

Seconds
500 550 600 650 700 750 800 850 900 950

CP
U

Lo
ad

 in
 %

 r
es

p.
 T

hr
ou

gh
pu

t i
n

M
B/

s

0

20

40

60

80

100

120

140

Throughput

CPU send

CPU recv

Linux allows processes to run more or less
simultaneously on a CPU by dividing the
processing time into timeslots.The decision
as to which process receives which timeslot
when is made by the scheduler.The sched-
uler applies a scheduling algorithm to select
an executable process from a list and allots
the process one timeslots worth of CPU
cycles.
A timeslot is normally 10 ms for Linux.The
length of the timeslot is important to a sys-
tem’s performance: if it is too short,
overhead caused by the scheduler making a
decision and switching from one process

(context) to another increases. If the times-
lot is too long, the processes will no longer
appear to be running simultaneously.
When a process terminates or needs to wait
for an external event, it no longer requires
the remainder of its timeslot, and thus
releases it prematurely, by calling the usleep
function, for example.
In this case, an exceptional call to the sched-
uler occurs and the scheduler passes the
remainder of the timeslot to the next regu-
lar process. Independently of this, the
scheduler is again called after the timeslot
has elapsed.

The Scheduler

wrote a program that works and sleeps
alternately in an infinite loop.

On account of its ability to hide from
the kernel’s standard process accounting
functionality, we called the program
“Harvey” (see Listing 1). The infinite
loop that starts in line 13, contains
the two functional blocks that perform
calculations and sleep. While working
Harvey repeatedly calls gettimeofday to
ascertain the elapsed time for a block.

When the time specified in RUNTIME
elapses, Harvey calls usleep(0) to
release the remainder of its timeslot (see
“The Scheduler” boxout). Figure 2
shows a screenshot of top, with Harvey
running. Obviously Harvey is not creat-
ing any load on the system and thus
demonstrates the same behavior as the
other programs.

As it is improbable that a process that
spends 90 per cent of its runtime in a
loop will create any noticeable CPU load,
we used the CPUmeter program shown
as Listing 2 to measure the load. The
program’s infinite while loop calls the
get_iterations function to measure the
number of loops per second. If the pro-
gram is launched with lowest possible
priority, the scheduler assigns it less CPU
cycles, assuming that at least one other
process is running on the system.

Thus, the number of iterations per-
formed per second is a measure of the
genuine load on the processor: the less
iterations, the more load there is. Look-
ing at CPUmeter shows that Harvey
creates a load of about 90 per cent on
our system – as one would expect from
viewing the listings.

Watching the Kernel
The interface used by top and co.
/proc/stat yields the CPU load measured
in timeslots only. Thus, one would sus-
pect that the kernel also applies the same
level of granularity. In the kernel
sources, fs/proc/proc_misc.c is respon-
sible for outputting the /proc/stat
pseudo-file, as specified in [1].

The structure used at this point, kstat,
contains the data on the timeslots used
by each CPU. Each entry is placed in one
of three categories: user, nice, and sys.
The global counter, jiffies, is used to out-
put non-utilized timeslots, that are either
used up by the kernel’s idle task, or not
used at all.

The structure elements are written to
the kernel/timer.c file by the update_
process_times function, that calls timer
interrupt routines every time a timeslot
elapses. Update_process_times checks
which process is currently active and, if
it is not the idle process, increments one
of the three counters: user, nice, or sys.
At the same time it decides which
process to attribute the elapsed timeslot
to. A timeslot is always attributed to an
active process at the point where it
elapses. If there is no active process at
this point, the kernel marks the timeslot
as unused.

Based on this background knowledge,
we can now better understand the
behavior shown by Harvey and the other
programs. Dropping the timeslot by call-
ing usleep means that there is no active
process in update_process_times. Thus
the routine records the timeslot as
unused, although in fact it was partly
used.

Phenomenon Observed
Previously
A Google search for this problem showed
that this issue is not unknown. Early in
2000 Jan Astalos produced a patch for

47www.linux-magazine.com June 2003

KNOW HOWCPU Monitoring

#include <unistd.h>
#include <sys/time.h>

/* runtime in microseconds */
#define RUNTIME 9000

int main(int argc, char** argv)
{
unsigned long n=0;
unsigned long t;
struct timeval s, e;

while (1)
{

/* work */
gettimeofday(&s, NULL);
do

{
n++;
gettimeofday(&e,

NULL);
t = (e.tv_sec-

s.tv_sec)*1000000
+(e.tv_usec-

s.tv_usec);
}

while (t < RUNTIME);

/* sleep */
usleep(0);
}

}

Listing 1: Harvey
#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>

#define TIME 1000000

unsigned long long
get_iterations(unsigned long
t_musec)

{
unsigned long long n = 0;
struct timeval s, e;
unsigned long tdiff;
gettimeofday(&s, NULL);
while (1)

{
n++;
gettimeofday(&e, NULL);
tdiff = (e.tv_sec-

s.tv_sec)*1000000+(e.tv_usec-
s.tv_usec);

if (tdiff >= t_musec)
break;

}
return n;
}

int main(int argc, char** argv)
{
unsigned long long cur;

while (1)
{
cur = get_iterations(

TIME);
printf(" %20Lu

iter./s\n", cur);
}

return 0;
}

Listing 2: CPUmeter

Process size Latency unpatched Latency patched
0 kByte 0.89 µs 0.97 µs
4 kByte 1.02 µs 1.11 µs
16 kByte 4.31 µs 4.44 µs

Table 1: Context Change
Latency figures

added to the process
structure. The last_
cycles array used for
this purpose contains
the value of the TSC for
the CPU in question at
the point when update_
process_cycles was last
called (line 10).

Lines 8 and 9 set the
global counter that con-
tains the used cycles
per CPU. This only hap-
pens if the current
process is not the idle
process, which has a
process ID (PID) of
zero.

In a similar fashion
kernel functions count the number of
CPU cycles used to handle interrupts and
soft IRQs.

Output via /proc/stat
The values ascertained here are output
via standard process accounting facili-
ties, that is, the /proc pseudo-filesystem
for the kernel. /proc/stat lists the number
of processes, interrupts, and soft IRQs
used, and not used, as well as the total

number of cancelled cycles. Each of
these values are displayed as a total for
all CPUs and for each individual CPU.

The CPU cycles used by each process
is displayed in /proc/PID/stat – again on
a per CPU basis and in total. /proc/inter-
rupts_cycles contains a more detailed
breakdown of the cycles used by inter-
rupts and soft IRQs. Listing 4 shows the
output for the pseudo-file: the lines start-
ing with numbers contain the cycles
used by the corresponding interrupts,
and the last four lines show the four
different soft IRQ types.

The system load values caused by
our program were ascertained for the
patched kernel, and correlate to the
values indicated by the CPUmeter
program (and make sense in program-
ming terms).

Our example in Figure 3 shows a
comparison between the load generated
by Harvey as measured for the standard
kernel and the patched version. As you
can see, Harvey successfully hides from
the normal kernel, whereas the patched

single-processor systems running the
2.2.14 kernel [2]. This patch uses the
timestamp counter (TSC) available on
more modern processors to count the
number of CPU cycles consumed by each
process.

When asked for a later, SMP capable
version, Jan sent us a version for 2.4.0,
that was the basis for the port to the later
kernel we were using. We additionally
added the ability to collate the number
of CPU cycles consumed either globally
or by CPU, and to detect cycles used by
interrupts and soft IRQs to the patch.
The latter was particularly important for
the kind of network measurements our
department needed to perform.

In contrast to the process accounting
performed by the standard kernel, that
occurs only at the end of each timeslot,
as previously discussed, we called the
function shown as Listing 3, update_
process_cycles, shortly before the sched-
uler assigns a new process to the CPU.
This is why the function is also called in
the kernel/sched.c file.

In lines 3 through 5 update_process_
cycles first ascertains the current process,
the active CPU and the current value of
the TSC. Line 7 updates the array, cycles,

48 June 2003 www.linux-magazine.com

CPU MonitoringKNOW HOW

Figure 2: top with Harvey running

void update_process_cycles(void)
{

struct task_struct *p = current;
int cpu = smp_processor_id();
cycles_t t = get_cycles();

p->cycles[cpu] += t - last_cycles[cpu];
if (p->pid)

kstat.used_cycles[cpu] += t - last_cycles[cpu];
last_cycles[cpu] = t;

}

Listing 3: Read CPU cycle statistics for the kernel

CPU0 CPU1
0: 20242854219 16586735080 IO-APIC-edge timer
1: 1636655 1225320 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
10: 0 0 IO-APIC-level usb-ohci
14: 251664916 263921645 IO-APIC-edge ide0
23: 5601393923 5431463426 IO-APIC-level eth0

HI_SOFTIRQ: 3924680280 3191840981
NET_TX_SOFTIRQ: 1115199064 1274524965
NET_RX_SOFTIRQ: 5157803275 4835883365
TASKLET_SOFTIRQ: 90516230 90298686

Listing 4: /proc/interrupts_cycles

[1] Linux Cross-Reference: http://lxr.linux.no/
[2] 2.2.14 Precise Accounting Patch Posting:

http://www.beowulf.org/pipermail/
beowulf/2000-February/008415.html

[3] Lmbench homepage: http://www.
bitmover.com/lmbench

[4] Precise Accounting Patch: http://www.ti.
uni-hd.de/HLT/documentation/
software-and-documentation.
html#kernel

INFO

kernel knows exactly what he is up to.
The patched kernel also displays correct
values for the load generated by
programs running on SMP systems.

To discover the effect this patch had
on the scheduler’s performance, we used
the LMbench [3] benchmark suite on
both the patched and unpatched single-
processor kernel. The values the
benchmark returned for context change
latency are shown in Table 1. More exact
accounting figures cost about a 10 per
cent increase in latency for context
changes.

Conclusion
The process accounting implementation
provided by the Linux kernel can return
incorrect values for the system load
under specific circumstances. This is
caused by the timeslot based granularity
that the kernel applies to measure CPU
cycle use.

The two test programs discussed here,
Harvey and CPUmeter, paint a clear pic-
ture of this issue. The kernel patch

discussed in this article, which is
available at [4], implements a process
accounting method based on the CPUs

timestamp counter registers, and
returned reliable results in our lab envi-
ronment for the system load. ■

KNOW HOWCPU Monitoring

Figure 3: Harvey exposed

0 10 15 20 25
0

20

40

60

80

100

Time in Sec.
5

CP
U

Lo
ad

 in
 %

Patched

Original

advertisement

