
a colon-separated list of directories that
the shell will search through if a com-
mand is entered without an absolute
pathname being specified (such as vi
instead of /bin/vi):

huhn@transpluto:~$ echo $PATH
/usr/local/bin:/usr/bin:U
/usr/X11R6/bin:/bin:/usr/games:U
/opt/gnome2/bin:/opt/gnome/bin:U
/opt/kde3/bin:/opt/kde2/bin:.:U
/usr/sbin:/sbin

If you want the variable to be valid in
any of the programs you launch, and not
only in the shell, you will need to prefix
the export keyword to the variable
assignment, so a=“1 2 3” becomes
export a=“1 2 3”.

As there are lots of things you can con-
figure Linux makes liberal use of shell
variables – you can type the env (for
environment) command to display a list:

huhn@transpluto:~$ env
PWD=/home/huhn
PS1=\u@\h:\w\$
ENV=/home/huhn/.bashrc
LS_COLORS=no=00:fi=00:...

LANG=en_GB
SHELL=/bin/bash
HOME=/home/huhn
PATH=/usr/local/bin:/usr/bin:U
/usr/X11R6/bin:/bin:/usr/games:U
/opt/gnome2/bin:/opt/gnome/bin:U
/opt/kde3/bin:/opt/kde2/bin:.:U
/usr/sbin:/sbin
LESSCHARSET=latin1
TERM=xterm
HOST=transpluto
...

This output shows you a few of the envi-
ronment variables; for example PS1
defines the appearance of the shell
prompt. In this case the variable is set to
\u@\h:\w\$: \u refers to the username,
followed by an @ sign. \h outputs the
hostname, then after the colon, the \w
outputs the current (working) directory,
and finally the prompt is terminated by a
dollar sign to indicate a “normal” user,
or a number sign (#) in the case of the
administrative user root.

The HOME variable defines your home
directory; you can change to it by simply
typing cd. If you change the value for the
HOME variable, this also changes the

When you type a command at
the console, the shell knows
where to look for the pro-

gram. If you launch an X program from a
remote server, the shell knows on which
desktop it should be displayed. Even
your IRC client knows what IRC server
you want to visit and with which nick –
all of these things depend on shell vari-
ables being set correctly.

Bash: The Final Frontier… The shell
and many other programs derive their
functionality on Linux from so-called
shell variables. These are variables just
like those used by many programming
languages with the exception that they
can only be used to store strings. Vari-
ables are assigned values using the
assignment operator (the = sign). If the
variable needs to store spaces or other
non-standard characters then the string
must be enclosed in ticks or quotes, such
as a=“1 2 3”.

Once defined, variables can be
accessed arbitrarily using shell scripts or
directly within the shell by prefixing a
dollar sign; thus the echo $PATH com-
mand with output the value of the PATH
shell variable. The PATH variable stores

84 June 2003 www.linux-magazine.com

Controlling variables is a funda-

mental skill no one should be

without. Here we will tell you about

shell variables. These hidden stores,

by which we pass information such

as where to find programs to the

shell and scripts, can easily be under

your complete control.

BY HEIKE JURZIK AND

HANS-GEORG EßER

env, export & Co.

Controlling Variability

Environmental VariablesLINUX USER

way cd and other programs react when
they parse the variable. The LANG vari-
able (“en_GB” in this case) defines the
language that the shell and other appli-
cations will use when they talk to you.
So, if you notice that your Linux
machine has developed a strange accent,
you might like to check the LANG vari-
able setting.

For ever?
When you assign a value to a variable,
the assignment only applies to the cur-
rent shell, opening another terminal gets
you a new shell where the previously set
variable no longer applies. To make the
variable available to all shells they need
to be exported. These exported variables
are so useful you will want them to be
set automatically, done by putting the
export command in one of the autostart
files, like .profile or .bashrc found in your
/home directory.

Before you start defining new
variables, you should always ensure that
they have not been defined already, as
other commands may not react as
expected if you change these
assignments.

If you overwrite the DISPLAY variable,
for example, you will not be able to
launch any X window programs in the
current shell, as X window depends on a
correct DISPLAY variable setting. Nor-
mally this variable will contain a value
of the “hostname:0” type.

In some cases shell variables can also
be used to define convenient features for
programs. Thus you can tell the BitchX
IRC client to log on to a specific IRC
server using a nickname of your choice,
by setting three variables:

IRCNICK="mynickname"
IRCNAME="identname"
IRCSERVER="irc.freenode.net"
export IRCNICK IRCNAME IRCSERVER

Whereas IRCNICK and IRCSERVER will
apply the settings we just discussed,
IRCNAME will define what is known as
an “Ident” for IRC; in many cases, this
will default to your username on the cur-
rent machine.

Dropping Assignments
Incidentally, you can call the env com-
mand with the -u flag to drop a variable

when launching a specific command.
Imagine you want to launch YaST2 in
character based mode on SuSE Linux;
you could use the following syntax to
do so

env -u DISPLAY yast2

This removes the DISPLAY variable from
the environment before calling yast2. Of

course, you could remove the variable
using the unset command – but this
would make the change persistent (for
the current shell).

The env command we just discussed
only applies to the current command
and so once you have finished with
this shell the DISPLAY variable is reset
and your X windows will launch
correctly. ■

85www.linux-magazine.com June 2003

LINUX USEREnvironmental Variables

Figure1: Examples of the many different shell variables

