
the MPI namespace. Each MPI program
is surrounded by the MPI::Init and
MPI::Finalize tags. MPI calls are illegal if
they occur before MPI::Init has initial-
ized the MPI environment, or after
MPI::Finalize has closed the MPI envi-
ronment.

The communicator is one of MPI’s
fundamental concepts. It groups pro-
cesses that can exchange messages.
Communicators are implemented by the
MPI::COMM class. The MPI::COMM_
WORLD communicator instance always
exists; it contains all the MPI processes
and is quite sufficient for simple
programs.

Libraries who need to encapsulate
their communication before the applica-
tion functions use their own
communicators. The Get_size method
tells you how many processes have been
assigned to a communicator, Get_rank
tells you a process’s rank. The rank and
size size variables are local, just like
all variables in MPI programs, and
can thus assume different values for
each process.

Calling the Get_processor_name
function places the name of the
computer running the process in a buffer
that the proc_name pointer references.
proc_name_length contains the length.
The string is null terminated before
being sent to the process with the
rank zero.

This process uses a for loop to receive
the processor names of the other
processes and store them to a file. If the
file cannot be opened, the Abort method

can be used to kill all the processes.
If you are wondering why the

process ranked zero (and not 42, for
example) collects the data, this is
because there will always be a zero
rank process. This ensures that the

MPI is the indisputed leader
when it comes to program-
ming Linux clusters and other

massively parallel computers.
The development of parallelized pro-

grams leads to a number of issues. The
load needs to be evenly spread and the
work performed by these multiple simul-
taneous processes needs coordinating.

Message Exchanges
Message exchanges are the central con-
cept at the heart of MPI. Many processes
combine to solve a large problem and
talk to each other to coordinate their
work. The concept is highly generic and
can be implemented on a variety of com-
puter architectures. This makes it more
or less irrelevant to the programmer
whether the program will run on a large-
scale SMP machine or throughout the
night on a collection of networked, and
otherwise idle, office machines.

MPI programs are usually designed on
the basis of the SPMD paradigm (Single
Program, Multiple Data). Multiple
processes run identical program code,
but each process handles different data.
Each process is assigned a unique rank
that influences its execution.

Implementations
The MPI standard defines only one API
(or three to be more precise, one each for
Fortran, C, and C++). Every super-com-
puter manufacturer offers its own
implementation, optimized for its own
hardware. Besides these there are also
free implementations such as LAM-MPI
[3] and MPICH [2].

How an MPI program is compiled, de-
bugged and launched will depend on the
implementation. The information in this
article is based on LAM-MPI and the
C++ API. The installation steps for LAM

70 June 2003 www.linux-magazine.com

are well documented, and in case of
installation issues, competent help is
always at hand via the LAM mailing
list [4].

Hello World!
Listing 1 shows a simple MPI program
that outputs the names of the computers
running the processes.

The header file included here, mpi.h,
provides MPI specific prototypes. All the
MPI classes and functions reside within

Linux clusters are all the rage. As this article shows, programming a cluster with MPI (Message Passing Interface) need

not be too difficult. Of course, we realize that most readers will not have a cluster of Linux machines under their desks,

so the sample programs will run on any normal PC. BY HEIKO BAUKE

Cluster Programming with MPI

Number Crunching

MPI Cluster ProgrammingPROGRAMMING

data will be sent to an existing process,
and that the program will run indepen-
dently of the number of processes. The
number of processes is stipulated when
launching the program.

All non-zero processes use the Send
method to send their strings. The proto-
type of the send method is as follows:

void Comm::Send(const void*U
buf, int count, const Datatype&U
datatype, int dest, int tag)U
const

It expects a pointer to a contiguous
memory area first. count stipulates the
number of elements of the datatype type
should be sent to the process ranked
dest.

Table 1 shows C++ datatypes. tag is
used to separate the messages, which are
uniquely identified by their com-
municator, a datatype and a tag. The
receiving process must possess a re-
ceiving method that matches the sending
method. So the communicator, datatype,
and tag of the sending and receiving

methods must match. The prototype of
the receiving method is called Recv:

void Comm::Recv(void* buf, intU
count, const Datatype&U
datatype, int source, int tag)U
const

The arguments mean the same as in
the sending method, but in this case
they refer to the source of the message,
instead of the target, and specify
a receive buffer rather than a send
buffer. Programmers must ensure that
the receive buffer is large enough.

Our Hello World program outputs the
processor name to a file and not to
standard output. This makes sense
because MPI programs are not typically
bound to a terminal. Additionally, the
MPI standard does not actually specify
what happens when data is output
to STDOUT or STDERR. Programmers
wanting to create portable code are well
advised to avoid output of this kind. The
LAM implementation passes any stan-
dard output to STDOUT by the processes

to mpirun, other implementations may
standard output to /dev/null.

The program can be compiled with
any C++ compiler, although using the

71www.linux-magazine.com June 2003

PROGRAMMINGMPI Cluster Programming

// hello_world.cc
//
// Hello World Program

#include <cstdlib>
#include <iostream>
#include <fstream>
#include "mpi.h"

using namespace std;

int main(void) {

MPI::Init(); // initialisiere
MPI

int
rank=MPI::COMM_WORLD.Get_rank();
// ascertain own rank
int

size=MPI::COMM_WORLD.Get_size();
// and number of processes

const int
max_proc_name_length=MPI::MAX_PRO
CESSOR_NAME+1;
int proc_name_length;
char *proc_name;

try {
proc_name=new

char[max_proc_name_length];
}
catch (bad_alloc &e) { // not

enough memory

MPI::COMM_WORLD.Abort(EXIT_FAILUR
E); // terminate all processes
}

MPI::Get_processor_name(proc_name
, proc_name_length); // which
hostname?

proc_name[proc_name_length]='\0';

if (rank==0) { // rank 0 is
indicated

ofstream
out("hello_world.out"); //
create output file

if (!out) // error =>
terminate processs

MPI::COMM_WORLD.Abort(EXIT_FAILUR
E);

// Receive status reports of

other ranks and write to file
for (int i=0; i<size; ++i) {
// Receive string and write

to file
if (i>0)

MPI::COMM_WORLD.Recv(proc_name,
max_proc_name_length, MPI::CHAR,
i, 0);

out << "Hello World! My
rank is " << i << " of " << size
<< ". "

<< "I am running on "
<< proc_name << "." << endl;

}
} else
// Send string

MPI::COMM_WORLD.Send(proc_name,
proc_name_length+1, MPI::CHAR, 0,
0);

MPI::Finalize(); // terminate
MPI

return EXIT_SUCCESS;
}

Listing 1: Hello World Program with MPI

MPI Datatype C++ Datatype
MPI::CHAR char
MPI::WCHAR wchar_t
MPI::SHORT signed short
MPI::INT signed int
MPI::LONG signed long
MPI::SIGNED_CHAR signed char
MPI::UNSIGNED_CHAR unsigned char
MPI::UNSIGNED_SHORT unsigned short
MPI::UNSIGNED unsigned int
MPI::UNSIGNED_LONG unsigned long int
MPI::FLOAT float
MPI::DOUBLE double
MPI::LONG_DOUBLE long double
MPI::BOOL bool
MPI::COMPLEX Complex<float>
MPI::DOUBLE_COMPLEX Complex<double>
MPI::LONG_DOUBLE_COMPLEX Complex<long

double>

Table 1: An MPI datatype is
available for each standard

C++ datatype

have been launched on all the machines
that will be running MPI programs later.
To do so, you will need to create a nodes
file that contains a hostname in each line
(the simplest case would be just local-
host) and launch the daemons by typing:

lamboot -v nodes

You only need to launch the daemons
once. If you enter lamhalt to terminate
the daemons, you will need to re-launch
them explicitly.

Ping Pong
The few MPI functions introduced in the
previous section allow you to author

fairly useful programs. Network band-
width plays an important role in the case
of Beowulf clusters. A small ping pong
program can be used to measure the
bandwidth (see Listing 2), where a fixed
length message is first passed from
process 0 to process 1 and then back
from process 1 to process 0. The elapsed
time is measured and a mean value for
multiple attempts ascertained.

You should be familiar with the MPI
initialization phase from the Hello World
program. The actual measurement is
performed in two loops (starting in line
37 and 41 respectively). The Barrier is
new; it ensures that a communicator’s
processes are synchronized. Each pro-

Wrapper compiler, which is normally
supplied with the MPI implementation
will ensure that the required libraries
and header files are found. The Wrapper
compiler for LAM-MPI is called mpiCC.

mpiCC -o hello_worldU
hello_world.cc

After compling, simpy enter:

mpirun -np 4 hello_world

to launch four instances of the
hello_world program. The -np parameter
defines the number of processes. Before
doing so, ensure that the LAM daemons

72 June 2003 www.linux-magazine.com

MPI Cluster ProgrammingPROGRAMMING

// ping_pong.cc
//
//
//
// Ascertain bandwidth in
relation to packet size

#include <cstdlib>
#include <iostream>
#include <fstream>
#include "mpi.h"

using namespace std;

const int
max_packet_size=0x1000000; //
maximum size of a message
const int count=250; // number
of messages per measurement
char buff[max_packet_size]; //
Send and receive buffer

int main(void) {

MPI::Init(); // initialize MPI

int
rank=MPI::COMM_WORLD.Get_rank();
// ascertain own rank
int

size=MPI::COMM_WORLD.Get_size();
// and number of

if (size==2) { // exactly two
processes needed for this process

ofstream out;
if (rank==0) { // Open

output file
out.open("ping_pong.dat");
if (!out)

MPI::COMM_WORLD.Abort(EXIT_FAILUR
E);

out << "# Data throughput
relative to packet size" << endl

<< "# Time resolution"
<< MPI::Wtick() << " s" << endl

<< "# Packet size\tmean
time\tmaximum time" << endl;

}

// Loop through various
packet sizes

int packet_size=1;
while

(packet_size<=max_packet_size) {
double t_av=0.0;
double t_max=0.0;
// Loop through multiple

messages
for (int i=0; i<count; ++i)

{

MPI::COMM_WORLD.Barrier(); //
Sync processes

// Send and/or receive
messages

if (rank==0) {
double t=MPI::Wtime();

// Starting time

MPI::COMM_WORLD.Send(buff,
packet_size, MPI::CHAR, 1, 0);

MPI::COMM_WORLD.Recv(buff,

packet_size, MPI::CHAR, 1, 0);
t=(MPI::Wtime()-t)/2.0;

// Time vector
t_av+=t;
if (t>t_max)
t_max=t;

} else {

MPI::COMM_WORLD.Recv(buff,
packet_size, MPI::CHAR, 0, 0);

MPI::COMM_WORLD.Send(buff,
packet_size, MPI::CHAR, 0, 0);

}
}
if (rank==0) { // Output

results
t_av/=count;
out << packet_size <<

"\t\t" << t_av << "\t" << t_max
<< endl;

}
packet_size*=2; // Double

packet size
}

if (rank==0) // Close output
file

out.close();
}

MPI::Finalize(); // Terminate
MPI

return EXIT_SUCCESS;
}

Listing 2: Measuring bandwidth with Ping Pong

cess interrupts the running program
while the communicator’s processes call
Barrier. Synchronization is important to
avoid misleading results. The MPI::
Wtime function is used to measure the
time in seconds since starting an internal
timer. The MPI::Wtick specifies the gran-
ularity of the timer.

Figure 1 shows the results. The
throughput is seen to improve proportion-
ally to the message size for Ethernet and
Myrinet until the maximum bandwidth of
64 kilobytes is reached. The transfer time
for the message roughly comprises two
parts.

One of them is the constant delay
(approx. 9 microseconds for Myrinet, and
approx. 75 microseconds for Ethernet)
and the actual transfer time, which is pro-
portional to the message length. The
delay is significant for smaller messages.

When messages are exchanged via
shared memory, a peak in the transfer
rate distribution can be observed. This
depends on the hard and software used.
Packets of more than 64 Kbytes will not
fit in fast access cache memory, and the
transfer rate drops drastically. In the case
of very large messages, the bandwidth is
restricted by the slower main memory.

Collective Communication
Send and Recv are used to exchange mes-
sages between two processes, however,

MPI provides communication methods
that involve all the processes handled by
a communicator.

A process, needing to communicate
to the other processes, could use a loop
to call Send and thus transfer these
results to every other process. The
other processes could then call Recv to
receive the results. The overhead for this
method increases relative to the total
number of processes.

The Bcast provides a simpler and more
efficient method. Bcast distributes a mes-
sage to all processes in a time
proportional to log2 no. of processes. The
prototype for Bcast is as follows:

void Comm::Bcast(void *buffer,U
int count, const Datatype&U
datatype, int root) const

The first argument is a pointer to a buffer
that stores the data to be sent or
received. The buffer contains count ele-
ments of the datatype specified by the
third argument. The last argument speci-
fies the process whose data are to be
distributed to the other processes.

Bcast communications use an
extremely effective tree. Process 0 sends
the data to process 4 in step 1. Now two
processes have the data (0 and 4). Both
of these send the data simultaneously to
processes 2 and 6. Finally, the four

processes with the data, 0, 2, 4, and 6,
send the data to processes 1, 3, 5, and 7.

Reduce is another useful function that
does the exactly the opposite of Bcast.
The prototype for Reduce is as follows:

void Comm::Reduce(const voidU
*sendbuf, void *recvbuf, intU
count, const Datatype &datatypeU
,const Op &op, int root) const

73www.linux-magazine.com June 2003

PROGRAMMINGMPI Cluster Programming

Operand Meaning
MPI::MAX Maximum
MPI::MIN Minimum
MPI::SUM Sum
MPI::PROD Product
MPI::LAND logical AND
MPI::BAND binary AND
MPI::LOR logical OR
MPI::BAND binary OR
MPI::LXOR logical exclusive OR
MPI::BXOR binary exclusive OR
MPI::MAXLOC Maximum and occurrence of

maximum
MPI::MINLOC Minimum and occurrence of

minimum

Table 2: MPI Operators for
Reduce

Figure 1: Results of bandwidth test using shared memory, Ethernet, and Myrinet. Myrinet data courtesy
of Tobias Czauderna and Andreas Herzog (Univ. Magdeburg)

100 102 104 106 108

0

50

100

150

200

250

300

350

400

450

Av
er

ag
e

ba
nd

w
id

th
 in

 M
By

te
/s

Shared Memory DualAthlon 1200 MHz
Shared Memory DualPentium III 800 MHz
Shared Memory DualUltraSparc II 400 MHz
Ethernet
Myrinet

[1] MPI Forum: http://www.mpi-forum.org
[2] MPICH:

http://www-unix.mcs.anl.gov/mpi/mpich
[3] LAM-MPI:

http://www.lam-mpi.org
[4] LAM Mailing list:

http://www.lam-mpi.org/MailArchives
[5] P. Pacheco; Parallel Programming with

MPI; Morgan Kaufmann Publishers; 1996
[6] Brian Hayes; Digital Diffraction; American

Scientist; Nr. 5 1996:
http://www.americanscientist.org/issues/
comsci96/compsci96-05.html

[7] Implementations:
http://www.lam-mpi.org/mpi/
implementations/

[8] http://www.lam-mpi.org/tutorials/
[9] Ian Foster; Designing and Building Parallel

Programs; Addison-Wesley; 1995: http://
www-unix.mcs.anl.gov/dbpp/

[10]Tina: http://tina.nat.uni-magdeburg.de
[11] Author’s homepage:

http://tina.nat.uni-magdeburg.de/heiko/
[12] Additional information:

ftp://www.linux-magazin.de/pub/list-
ings/magazin/2003/05/MPI

INFO

void Comm::Gather(const voidU
*sendbuf, int sendcount, constU
Datatype &sendtype, voidU
*recvbuf, int recvcount, constU
Datatype &recvtype, int root)
§§ const

root specifies the process by or to which
sendtype type data are sent. sendcount
specifies the amount of data each proces-
sor will send or receive. The sendcount
and recvcount, and sendtype and recvtype
arguments are typically identical.

In listing 3. each process generates a
pseudo-random number, and then the
maximum, and minimum values, and
the sum of the pseudo-random numbers
is calculated. Information is collected by
process zero and written to a file.

Digital Diffraction
The program on the web site [12] creates
parallel diffraction images. It calculates
the diffraction between spherical waves
originating at various points on the

screen. The article at [6] provides addi-
tional details.

After initializing MPI, the process
ranked zero reads a configuration file
that contains geometrical data. A call to
Bcast distributes the geometrical data to
all other processes.

The program uses geometrical distrib-
ution to parallelize the calculations. The
screen area for which the intensity distri-
bution will be calculated is divided into
narrow horizontal bands. After this cal-
culation, a call to Reduce discovers the
intensity of the brightest point. Gather
collects the image data to allow process
zero to output a portable graymap file.

Conclusion
MPI is extremely powerful. Amongst
other things MPI provides non-blocking
communication, additional collective
communication functions, derived data-
types and special topologies. [9]
provides a discussion of several generic
aspects of parallel programming. ■

Reduce uses the operation specified by
the op operator to collect the data that all
processes have placed in the buffer
pointed to by sendbuf. The results are
placed in the recvbuf of the process refer-
enced by root. The send and receive
buffers contain count elements. The
count, datatype, op, and root arguments
must be identical for all processes.

The case where local data belonging to
one process needs to be distributed
across all processes is handled by the
Scatter function . In contrast to this,
Gather collates distributed data within a
single process. The prototype for Scatter
is as follows:

void Comm::Scatter(const void U

*sendbuf, int sendcount, constU
Datatype &sendtype, void U

*recvbuf, int recvcount, constU
Datatype &recvtype, int root)U
const

and Gather as follows:

74 June 2003 www.linux-magazine.com

MPI Cluster ProgrammingPROGRAMMING

// collective.cc
//
// Sample program for collective
communication

#include <cstdlib>
#include <fstream>
#include <vector>
#include "mpi.h"

using namespace std;

int main(void) {

const int count=8;
vector<int> rand_nums(count),

max(count), min(count),
sum(count),

all_rand_nums;

MPI::Init(); // initialize MPI

int
rank=MPI::COMM_WORLD.Get_rank();
// ascertain own rank
int

size=MPI::COMM_WORLD.Get_size();
// and number of processes

srand(7*rank); // initialize

random number generator
for (int i=0; i<count; ++i) //

throw dice
rand_nums[i]=rand()%1000;

if (rank==0) // allocate space
at receiving process

all_rand_nums.resize(count*size);
// Collect data

MPI::COMM_WORLD.Gather(&rand_nums
[0], count, MPI::INT,

&all_rand_nums[0], count,
MPI::INT, 0);

// Calculate maximum, minimum,
and sum and send to rank 0

MPI::COMM_WORLD.Reduce(&rand_nums
[0], &max[0], count, MPI::INT,
MPI::MAX, 0);

MPI::COMM_WORLD.Reduce(&rand_nums
[0], &min[0], count, MPI::INT,
MPI::MIN, 0);

MPI::COMM_WORLD.Reduce(&rand_nums
[0], &sum[0], count, MPI::INT,

MPI::SUM, 0);

if (rank==0) { // Save results
ofstream

out("collective.out");
for (int i=0; i<size; ++i) {
out << "Process " << i << "

:";
for (int j=0; j<count; ++j)
out << "\t" <<

all_rand_nums[i*count+j];
out << endl;

}
out << endl << "Maxima :";
for (int i=0; i<count; ++i)

out << "\t" << max[i];
out << endl << "Minima :";
for (int i=0; i<count; ++i)

out << "\t" << min[i];
out << endl << "Summen :";
for (int i=0; i<count; ++i)

out << "\t" << sum[i];
out << endl;

}

MPI::Finalize(); // terminate
MPI

return EXIT_SUCCESS;
}

Listing 3: Demonstration of collective message exchange methods

