
that independent of scientific discipline
or industrial area, abstracted problems
and their solutions usually repeat them-
selves. When analyzing about 40.000
extraordinarily successful patents, it was
found that all of these were based on just
40 different solutions.

Another principle is that the evolution
of technical systems follows certain ten-
dencies and that essential innovation
often requires an influx of scientific
results from another area.

What this describes is an abstraction
of problem-solving strategies; an often
used example is “A massive steel cube of
1m edge length is to be moved into a
deep cavity without using cranes, ropes
or similar tools. It also must not be
thrown. Develop 3 appropriate solutions
within 10 minutes.”

The most well-known project to solve
this and other problems with software is
probably the TechOptimizer, which, like
all the other applications in this field, is
proprietary and very expensive.

Skidbladnir now seeks to provide this
functionality as Free Software. Besides
the installation components, the project

consists of andax.php, which contains
the basic principle to resolve technical
contradictions, project sporadikus for
web-brainstorming and perplexus.php,
in which over 250 effects are available.

The project isn’t complete and is not
very comfortable to use yet. The effects
database is not as large as Lars would
like it to be. In particular, the networking
of effects, which allows for efficient
combinations, should be expanded.

The following provides a very simple
example for this:
• (a) luminescent material converts UV

light into visible light;
• (b) fine ground/spread metal inhibits

luminescence;
• (c) before a moving part of an engine

fails, small bits of metal are released
into its oil. Combining these three
facts easily leads to the idea that
adding luminescent material to oil will
allow determination of when certain
parts of machinery need to be replaced
before they fail, because the lumines-
cence in the oil will stop.

Real situations are often much more
complex and require a large database of

The first feature for this month is the
Skidbladnir [1] project, the name
of which might be as mysterious as

its description to some people.

Skidbladnir
The author, Lars Brand, describes it as a
“toolbox with information and programs
for Computer Aided Innovation.”

Computer Aided Innovation may not
be very well known, so we are lucky that
that Lars went to the extra effort to give
some background information.

The scientific background of Skidblad-
nir is known as the “Theory of Inventive
Problem Solving”, in English abbreviated
as TIPS, in German and Russian known
as TRIZ. The theory has its origins in
1946 with Prof. Altschuller, who at the
time was a patent engineer for the army.

When Prof. Altschuller sent a letter to
Stalin, informing him about the begin-
nings of his theory, he immediately
found himself imprisoned and sent to a
camp for suspicious subjects. During his
imprisonment he met numerous profes-
sors from different scientific areas, who
helped him combine knowledge of many
different disciplines.

Released from the camp and again
having become one of the undesirables
around the end of the 60s until the mid
70s, he began publishing his results as
Sci-Fi novels in order to raise funds for
his scientific work as Genrikh Altov. The
TIPS theory is based upon the principle

Welcome to another issue of the Brave GNU World.

This month we concentrate on some important scientific

projects and free audio environment for interactive multimedia applications

BY GEORG C.F. GREVE

The monthly GNU column

Brave GNU World

91www.linux-magazine.com July 2003

COMMUNITYBrave GNU World

Figure 1:The Moon-lander game written in Lush Figure 2:Lush showing problem free Lisp and C mixed within a program

92 July 2003 www.linux-magazine.com

effects that has to be assembled from
technical literature. This is a tedious and
work-intensive task.

Skidbladnir was written in Perl, PHP
and MySQL and it is published under the
GNU General Public License (GPL).
Compared to proprietary projects, Skid-
bladnir may have comparatively few
effects, but it already contains software
effects; possibly the first of its kind.

Help is very welcome in any form,
developers especially, as well as users
who are willing and able to give much
needed feedback. Also more data about
effects and access to real-life problems
would be appreciated.

In the mid to long-term, Lars is con-
vinced that Free Software will be
extraordinarily successful in this area, as
both TIPS and Free Software are based
upon the idea of preserving knowledge
and making it accessible.

Making these insights and methods
available to all people seems like a very
important project not much unlike an
encyclopedia, worthy of support.

As a side-effect it also reduces the
market-entry barrier in this area, since
many potential users cannot afford to
use the proprietary solutions, so it could
help revitalizing the technical area.

Anyone interested and people from
this area are encouraged to take a look.
More information about the background
are also available on the web. [2]

Lush
The second project of this issue is also
scientifically oriented. Lush [3] is an
object-oriented programming language

for scientists, ex-
perimenters and
engineers in need
of larger numerical
and graphical app-
lications.
The design of Lush
seeks to combine
the strengths of 3
different program-
ming approaches
into one. The first
is an interpreted,
dynamic LISP-like
language with auto-
matic garbage col-
lection and weak
typing. The second

language is a compiled, lexical language
using the same syntax, but strong typing.
The third language is C, which can be
mixed with the Lush syntax within a pro-
gram or even a single function.

Lush has been developed since 1987.
Originally it went by the name “SN” as a
script language for simulation of neural
networks. Over time if has developed
into a complete programming language
with compiler. The main actors in the
development of Lush were Bell Labs
(later “AT&T Labs”), in Holmdel, NJ,
USA, Neuristique S.A. in Paris, France
and NEC Labs in Princeton, NJ, USA.

After Lush/SN had been used for years
within AT&T for their internal research
and development projects, the parties
involved eventually agreed upon the
GNU General Public License (GPL) and
relicensed Lush as Free Software.

Today the project is maintained by
Yann LeCun , who answered Brave GNU
World’s questions, and Leon Bottou of
the “NEC Labs America” in Princeton,
who receive support by a large number
of volunteers from all over the world,
such as Fu Jie Hang, Patrice Simard,
Patrick Haffner, Yoshua Bengio, Pascal
Vincent, Jean Bourrelly, Xavier Dran-
court or Secil Ugurel, to name a few.
More volunteers are always welcome.

Primarily developed as a Free Soft-
ware Matlab-replacement, Lush offers
a complete all-purpose language. With
easy integration of C, Lush is a very
good choice for scripting or inte-
gration in order to assemble distributed
functionality in a comfortable GUI
application.

This integration also makes integrating
existing libraries quite easy, which is
why Lush has bindings to numerous sci-
entific, graphical and audio-visual
libraries, like the GNU Scientific Library
(GSL; see issue #35 [4]), OpenGL / GLU
/ GLUT, ALSA, Video4Linux or the Intel
Vision Library.

When comparing the levels of support
for the GSL between Python and Lush,
Lush looks pretty good with about 4000
supported functions as opposed to the
few hundred supported by Python. The
syntax is cleaner than Perl and should be
easier to learn than Scheme. When com-
paring speed with Octave or Matlab, it is
between 15 and 300 times faster,
depending on the situation.

These advantages seem to make Lush
an interesting choice and definitely
worth a glance. Lush has even been used
for games, like a simple moon-lander,
seen in Figure 1.

Lush was written in C and it tradition-
ally runs on GNU/Linux, Solaris, Irix and
OpenBSD, although since February 2003
a Cygwin Windows port is available.

One of the problems of the project is
that the compiler design is more than 10
years old and therefore has some strange
and rigid limitations. Rewriting the com-
piler is therefore on the ToDo list.

Also on the list are adding support for
more libraries, as well as improving the
documentation system. Adding a tem-
plate mechanism to Lush is also planned
in for the mid-term.

Additionally, there is a lot of interest in
a Mac OS-X port, for which volunteers
are sought. An automated parser for
C/C++ header files for automagical
inclusion in Lush would also be a quite
useful project.

Should you live in the United States,
you run a good chance of already having
been in indirect contact with Lush. Some
ATMs by NCR use Lush-generated code
on embedded DSP processors to auto-
matically read the amounts on deposited
checks. And a high-speed check reading
engine written in Lush reads about 10%
of all checks deposited in the USA.

jMax
As regular readers of the Brave GNU
World should know, the Free Software
Foundation Europe is a partner in the
AGNULA project, [5] which aims at

Brave GNU WorldCOMMUNITY

Figure 3:The music program jMax is platform independent

engine written in C, which does all the
work. This allows running the engine
with GUI, writing alternative GUIs or
integrating the engine into a plugin envi-
ronment (LADSPA).

Normally, this server is controlled via
a client written in Java. Java was chosen
so it would run on as many platforms as
possible with the minimum amount of
problems. Unfortunately the situation of
Java is not without problems with refer-
ence to Free Software.

Java dependencies
The problem of Java is neither its techni-
cal specification not its implementation.
Although some people have different
opinions about them, they are not the
cause of the problem for Free Software.

The cause of the problem is how Java
itself is developed and distributed, since
there are essentially only two wide-
spread implementations, both of which
are proprietary: one is maintained by
Sun, the other by IBM. Although these
may be distributed without licensing
cost, they do not offer the freedoms nec-
essary to make them Free Software.

In consequence every application run-
ning on these platforms – even software
that is under a Free Software license – is
putting the freedom of the user at risk. A
situation similar to running Free Soft-
ware on a Windows system.

There are some approaches and initia-
tives to implement Java entirely in Free
Software (see “GNU and the Java lan-
guage” [7]). However, since the
dominant reference implementations are
proprietary, the free projects always need
to re-implement the features the propri-
etary versions have come out with.

Not every developer likes participating
in such a biased race that cannot be
won. Free Software is put at a disadvan-
tage and therefore offers a smaller degree
of functionality.

When developers of Java applications
make use of the more advanced features
of proprietary Java implementations,
these can usually not be run on Free
Software Java implementations anymore
and in consequence are dependent on
the proprietary platforms.

This is precisely the problem of the
jMax client. Since adding proprietary
software into AGNULA is out of question
for all partners, AGNULA may not be

capable of including jMax with a fully
functional GUI.

pyMax
After none of the alternatives seemed
very likely to resolve the problem in time
– more information is available on the
FSF Europe home page [8] – it was now
decided to do without Java entirely and
re-implement the client in Python.

The choice for Python was influenced
by its platform independence and that it
allows rapid development while (natu-
rally) being entirely Free Software.

It is not clear whether IRCAM will be
capable of finishing that client in time,
though. They are looking for volunteers
that can help them write the client.

According to François, IRCAM cannot
make large promises, but they offer to
provide priority support to people work-
ing on the Python client and guarantee a
response time of 24hrs during working
days. So if you are interested in this, you
could take a look at the jMax developers
mailing list. [9]

Enough for now
Should you come across an interesting
project, please let me know. Often it is
the readers of the column who find the
gems – the Lush feature was triggered by
a tip by Stefan Kamphausen, the author
of the Brave GNU World logo. ■

putting together an entirely Free Soft-
ware GNU/Linux distribution for pro-
fessional audio users.

Another partner of the project is the
“Institut de Recherche et Coordination
Acoustique/Musique” (IRCAM), the cen-
ter of music of the Centre Pompidou in
Paris, France. One of the applications
written by IRCAM is jMax [6], a gra-
phical development environment for
interactive multimedia applications.

Audio applications traditionally had
the problem that they were often written
for specific hardware and therefore very
platform dependent. Because of the
rapid development in hardware, pro-
grams had to be rewritten every three
years for a new platform, otherwise the
music written for these programs was in
danger of being lost.

This motivated the development of a
pure software solution that would not
depend on a specific platform.

The paradigm employed in jMax
allows creating and/or combining cer-
tain basic elements like frequency
generators, signal filters, effects, input-
and output-modules, sliders, DSPs and
amplifiers with each other and assem-
bling them to so-called “patches.”

These patches integrate their compo-
nents and can be combined into almost
infinitely complex constructs, making it
generally possible to implement any kind
and type of digital signal processing,
effect or synthesizer.

One implementation of this paradigm
that is rather well-known among musi-
cians is the proprietary “Max.” In 1995
jMax started out with the intention of
creating a platform independent version
of Max. In mid-1999 it was then released
as Free Software under the GNU General
Public License (GPL).

The IRCAM jMax team working on the
project consists mainly of François
Déchelle and Patrice Tisserand. François,
who also filled out the Brave GNU World
standard questions, sees the main
advantages of jMax in its platform inde-
pendence – it runs on GNU/Linux, Mac
OS X and Windows, and the higher flexi-
bility when compared with other
implementations of the paradigm, such
as Max or PD.

One of the key advantages is also that
jMax consists of two components. The
central component is a server, a real-time

93www.linux-magazine.com July 2003

COMMUNITYBrave GNU World

[1] Skidbladnir home page:
http://mitglied.lycos.de/altow/

[2] TIPS/TRIZ: http://www.triz-journal.com/
[3] Lush home page: http://lush.sf.net
[4] Linux Magazine, Issue 18, March 2002,

Brave GNU World
[5] AGNULA home page:

http://www.agnula.org
[6] jMax home page:

http://www.ircam.fr/jmax/
[7] GNU and Java home page:

http://www.gnu.org/software/java/
[8] AGNULA Java issues: http://fsfeurope.org/

projects/agnula/java.html
[9] jMax developer mailing list:

http://listes.ircam.fr/wws/info/jmax
[10]Home page of Georg’s Brave GNU World:

http://brave-gnu-world.org. Send ideas,
comments and questions to Brave GNU
World: column@brave-gnu-world.org

INFO

