
The figures speak for themselves.
Over four million downloads, more
than 50 commercial products and

over 200 Open Source projects with one
common denominator: Eclipse as an
open and non-proprietary platform for
software tools. The assumption that an
Integrated Development Environment,
IDE, can only succeed by co-operation
between a number of software tool
manufacturers seems to have been
confirmed for the erstwhile initiators,
particularly IBM. Big Blue has con-
sistently followed what was a new
strategy for the enterprise, ever since the
public release of the source code in
November 2001.

The Open Source Community based
around the mutual development project
has been growing ever since. One of the
major players is IBM’s Swiss subsidiary,
Object Technologie International (OTI),
whose Technical Director, pattern guru
Erich Gamma, was responsible for the
technological development of Eclipse’s
predecessor, VisualAge for Java.

The fact that several other big names
participate in the Eclipse Project Man-
agement Commission (PMC) such as
Borland, Hewlett-Packard, SuSE or Red
Hat guarantees a neutral stance. SAP is a
recent addition to this illustrious circle.
SAP sees Eclipse as a promising addition
to a system architecture increasingly
dominated by J2EE.

Installation
Due to the rather large footprint of the
ZIP archive (almost 65 Mbytes), there
are several regional mirror sites for the
Eclipse platform besides the original US
based source.

The UK Eclipse community can access
the Heanet server based in Ireland [1] for
good download speeds and daily
updates.

A Java SDK version 1.3 or later is
required for the installation; the latest
1.4 version is recommended however, as
it is the only version that allows you to
use the Java debuggers so-called “Hot
Code Replacement” feature in Eclipse.

Previously reserved for Visual Age
developers, this feature allows you to
swap broken code while running the
debugger without having to re-launch
the program. And this can save a lot of
time, particularly if you are running an
application server.

The GTK version of the platform,
which some developers prefer for ergo-
nomic reasons, requires at least version
2.0.6 of the GUI library. This can cause
package dependency issues, and necessi-
tate time-consuming updates on Red Hat
7.3 for example.

The Motif version is less choosy in this
respect; simply add the libXm.so.2.1
library from the main Eclipse installation
directory /etc/ld.so.conf.

/sbin/ldconfig

reloads the references to the dynamically
linked program libraries. You can then
launch the IDE by typing:

eclipse -data $HOME

The innovative Eclipse concept for

independent plug-in development

has been one of the major topics of

interest within the software develop-

ment community for over two years

now. The number of products and

projects is rising rapidly That

prompted us to take a closer look at

the basic architecture and experi-

ment with developing our very own

extension.

BY MARTIN RAEPPLE

Eclipse – Architecture and Plugin Development

At the speed of light

63www.linux-magazine.com July 2003

PROGRAMMINGEclipse

where the basic functionality is a non-
replaceable component of a monolithic
runtime environment.

Functionality
Viewed as a whole, the Eclipse Java
IDE presents itself to the developer as
an extremely “transparent” developer
environment. Users migrating from Visu-
alAge will appreciate the fact that their
code no longer ends up in a proprietary
repository, but can be stored directly at a
user-configurable position on the filesys-
tem. This makes the IDE accessible to
fans of sed, grep, and other external tools
that have by no means outlived their
usefulness.

On the downside, many facilities
appreciated by Visual Age users, such as

internal version history and team devel-
opment, through tight integration with
major version control tools like CVS have
been retained.

Release 2.1 which became available on
March 27 saw further enhancements to
one of Eclipse’s major benefits, support
for code refactoring.

This allows developers to upgrade
direct access to local variables to class
global, bean conform getting and setting
methods just by clicking.

The automatic facility for creating
methods for delegate modules [2] is also
new. And modifications can be pre-
viewed before they are actually im-
plemented.

Quick Fix (see Figure 1) is another
remarkable function that not only parses
code for errors while it is being written,
but can also present the developer with
various suggestions on how to remedy
the situation, if so desired.

In the light of all this functiona-
lity, what reason could a developer pos-
sibly have for changing to a commercial
variant?

GUI developers will miss a GUI buil-
der, for example. And a powerful Java
Server Pages (JSP) editor with syntax
highlighting and automatic code comple-
tion is also missing. The picture is also
marred by the lack of integration with a
major J2EE application server.

Docked – Plug-Ins for J2EE
If you look hard, you should quickly find
a solution to the last issue amongst the
reams of plug-ins. We would recommend
adding a free plug-in by French software

The -data parameter tells Eclipse to cre-
ate the workspace relative to the
specified path – in this case the system
user’s home directory.

Goals and Architecture
Eclipse has no direct primary connection
to Java or any other programming lan-
guage. On the contrary, the platform is
aimed to flexibly integrate arbitrary func-
tionality due to a highly modular
architecture based on components. The
architecture does not necessarily have
anything to do with a program’s develop-
ment. Most components, better known
as plug-ins, for free or commercial pro-
grams today are in fact development
tools, that is compilers, editors, model-
ing tools, or debuggers.

This also applies to the Java program-
ming language support in the form of the
so-called Java Development Tools (JDT),
an extension which is automatically
installed and comprises a collection of
plug-ins.

If you stick to the basic functionality of
Eclipse as a raw runtime environment
for plug-ins, a wide range of different
scenarios are imaginable, such as a mod-
ularly extensible graphics program that
has an basic editor component (a plug-
in, of course) and allows the user to
install additional graphics filters and for-
mats – also as plug-ins.

This design has been successfully real-
ized by market leaders in the past. This
architecture differs from traditional IDEs

64 July 2003 www.linux-magazine.com

EclipsePROGRAMMING

Figure 1: Quick Fix: Code analysis and debugging while encoding

Figure 2: JSP debugging with the Tomcat plug-in by Sysdeo

developers, Sysdeo [3], to provide sup-
port for the well-known servlet and JSP
engine, Tomcat. As is the case for all
plug-ins, installation is as easy as falling
off a log. Simply unpack the ZIP or TAR
archive in the plugins subdirectory
below Eclipse and re-launch the IDE –
finished!

Sysdeo does not provide its own ver-
sion of Tomcat, instead the plug-in
assumes that a Tomcat has been
installed. This allows for a high degree of
flexibility with respect to the version you
use, as the plug-in can be configured to
support Tomcat 3.x through 5.x. Once

installed, you will not want to do with-
out the facility for starting and stopping
the engine directly in Eclipse and the
possibility to debug JSPs (see Figure 2).

However, this does require an addi-
tional entry for the web application
context in your Tomcat configuration
file, server.xml. The temporary directory
for the servlets generated by any JSPs
must be re-directed to a project reposi-
tory accessible to Eclipse. The following
example shows how to do so:

workDir="<path-to-sources>U
/work/org/apache/jsp"

If you add the path to the project proper-
ties as an additional source code
directory, there is nothing to prevent
debugger access to the servlets.

Complex, multi-level J2EE applications
will tend to integrate a database that the
developer will normally want to keep an
eye on. The Quantum DB Plugin [4]
proved to be a useful, free alternative.
Many major database systems for Linux,
such as MySQL, Postgres, or DB2 can
easily be integrated as plug-ins for the
IDE, allowing the developer to create his-
tory files for queries, query spreadsheet
metadata, and display a tree-view of the
whole database.

Writing Your Own Plug-Ins
If you are raring to start programming
that IDE extension you have been miss-
ing for so long, Eclipse rewards your
keenness by providing comprehensive
support for programming your own plug-
ins. Besides the JDTs, a comfortable
Plug-In Development Environment, PDE,
is installed. The PDE provides easy
access via the File -> New -> Project ->
Plug-In Development menu, including a
wizard and templates to introduce devel-
opers to Eclipse’s component archi-
tecture. The PDE Guide, which is avail-
able via online help, also provides a
useful introduction to this aspect of
Eclipse.

Besides the Java classes themselves,
the so-called manifest file plugin.xml is
the central component of each plug-in. It
provides details on the general configu-
ration of the smallest executable units,
and describes how they integrate with
the platform. Integration can occur at
various, clearly defined positions within
the Eclipse framework. The new editors
(org.eclipse.ui.editors), menu entries
(org.eclipse.ui.actionSets), or a work-
bench preference page (org.eclipse.ui.
preferencePage) are examples of these
extension points.

In the following section we will be
looking at an achievable example of
using a plug-in to extend the platform’s
XML functionality. The aim is for users
to be able to analyze the elements and
their occurrences of an XML document
that forms part of a project.

To allow for this, an additional “XML
Processing” item, and a “Count Ele-
ments” sub-item that provides the

65www.linux-magazine.com July 2003

PROGRAMMINGEclipse

<?xml version="1.0" encoding="UTF-8"?>
<plugin

id="XMLProcessing"
name="XMLProcessing Plug-in"
version="1.0.1"
provider-name="Martin Raepple"
class="net.raepple.plugin.XMLProcessing">

<runtime>
<library name="XMLProcessing.jar"/>

</runtime>
<requires>

<import plugin="org.eclipse.core.resources"/>
<import plugin="org.eclipse.ui"/>

</requires>

<extension
point="org.eclipse.ui.popupMenus">

<objectContribution
objectClass="org.eclipse.core.resources.IFile"
nameFilter="*.xml"
id="XMLProcessing.contribution1">

<menu
label="%menu_entry"
path="additions"
id="XMLProcessing.menu1">

<separator
name="group1">

</separator>
</menu>
<action

label="%action_count_elements"
class="net.raepple.plugin.popup.actions.CountElements"
menubarPath="XMLProcessing.menu1/group1"
enablesFor="1"
id="XMLProcessing.newAction">

</action>
</objectContribution>

</extension>
</plugin>

Listing 1: plugin.xml

other projects, again you should stipu-
late the -data <Plug-In-Workspace>
parameter when launching Eclipse.

The entry point for this plug-in’s
functionality is the CountElements class
specified by the <action> element
when selecting a menu item (see Listing
2). It is automatically created by the
Wizard, and implements the IObject
ActionDelegate Java interface.

At this point, developers would do
well to investigate Eclipse’s own GUI
library (Standard Widget Toolkit, SWT).
Suffice to say that the interface needs
to implement the run() and selection-
Changed() methods, which are called
when the selected object (the XML file)
is accessed and allow any further steps
to be initialized.

These methods are designed to open a
Wizard type dialog box for a selection
(see Figure 4), and prompt the user
for an element name. The appropriate
class, XMLElementCountWizard (avail-
able only online from [5] to save space),
derives from the SWT Wizard com-
ponent and overwrites its addPages()
and performFinish() methods. The for-
mer first adds a single dialog page of the
XMLElementCountPage type which in-
herits the attributes of the abstract
WizardPage class. User-specific GUI
elements are created by overwriting the
createControl() method that the Wizard
calls.

After the entry has been confirmed,
performFinish() is called. As the plug-in

now has all the information it needs, that
is the XML file and the element name, it
can use JAXP and the DOM API to ascer-
tain the required value elegantly and
with very little effort. The results are pre-
sented to the developer in the form of a
message (see Figure 5).

In addition to the classes we defined, a
main class is automatically generated
when creating a plug-in. This class con-
tains methods that provide access to the
data of the runtime environment (work-
bench and workspace).

In the case of multilingual extensions
it additionally manages a typical Java
resource bundle that parses the content
of property files containing language
specific texts. In the case of texts that
directly affect the plug-in configuration,
such as menu items, % can be prefixed
in plugin.xml.

Doing so will automatically look up
a corresponding translation according
to Java’s search rules for language
resources. To allow this, a plugin.-
properties file must exist in the main
plug-in directory. In our example, the file
has the following content:

menu_entry = XML Processing
action_count_elements = U

Count Elements

Additional language support can be pro-
vided by files with a corresponding
country identifier and a translation (such
as plugin_de.properties).

previously described functionality will
be displayed in the drop-down menu for
files with the .xml suffix. We will be
using a plug-in that docks at the
org.eclipse.ui.popupMenus extension
point for drop-down or popup menus
(see Figure 3) to implement this facility.

The manifest file for Listing 1 is fairly
self-explanatory. In addition to super-
ordinate details such as a unique
reference ID, the JAR archive with the
classes (<runtime>) and dependencies
(<requires>) with respect to other plug-
ins, which are also referenced by their
Ids, one or multiple extension points
(<extension>) can be defined. Each
extension points has additional attrib-
utes that permit precise configuration of
the plug-in.

In our example, the drop-down menu
entry is only displayed while the mouse
is pointing at a file resource (object-
Class=“org.eclipse.core.resources.IFile”)
with the .xml extension (nameFilter=
”*.xml”).

The XML <action> tag specifies the
class to call for this selection as
class=“net.raepple.plugin.popup.actions
.CountElements”. To impacting perfor-
mance, Eclipse will not typically load
plug-in code immediately on launching,
but wait for the code to be called.

The Plug-In Manifest Editor plugin.
xml provides convenient editing facilities
– one of the PDE’s major features. If you
need to separate the development of
plug-ins and accompanying classes from

66 July 2003 www.linux-magazine.com

EclipsePROGRAMMING

Figure 3: Launching a plug-in via the drop-down menu Figure 5: A message informs the developer of the results

Figure 4: The XML Element Count plug-in meets the
Wizard

Debugging techniques for a plug-
in development project are slightly dif-
ferent from the procedures for tradition
Eclipse projects.

To shift to debugging mode, you need
to launch a second workbench (Run ->
Debug as -> Run-time Workbench) as a
runtime environment for your test candi-
date. However, the first workbench is
still used to set breakpoints and control
the program execution.

After resolving any issues, there is no
need to hide your new plug-in from the

rest of the world. You could simply com-
pile a Zip or Tar archive and put it on the
Web, where other programmers can
download it.

The Eclipse Update Manager does pro-
vide a slightly more elegant approach.
The Update Manager checks dependen-
cies and versions, operating system
incompatibility and various other issues
when installing new extensions.

This reduces the plug-in users task
to simply supplying a URL, where
the code can be downloaded to the

Update Manager (Window -> Open Per-
spective -> Install/Update). Plug-in
providers can setup an update site using
New Project -> Plug-in Development ->
Update Site Project.

Conclusion
Open Source works. This is becoming
increasingly apparent, thanks to success-
ful projects such as Eclipse, that have
managed to achieve the fine balance
between the potential that commercial
suppliers offer and the interests and
goals of the Open Source developer
community.

If the technical concept also supports
a collaborative approach to software
development with an innovative and
well thought out component architec-
ture, the resulting product is often
well-suited for professional use.

Version 2.1 of Eclipse has seen the
product develop into an extremely stable
and fully-featured platform that em-
powers developers, allowing them to
create their own extensions quickly and
effectively.

In future one would hope for a loosen-
ing of the close ties to IBM with respect
to platform development. Some initial
efforts in non-Java areas such as C++ or
C# are already noticeable. ■

67www.linux-magazine.com July 2003

PROGRAMMINGEclipse

[1] Irish based Heanet Eclipse mirror site:
http://eclipse.ftp.heanet.ie/downloads/

[2] Sun J2EE Patterns Catalog: http://
developer.java.sun.com/developer/
restricted/patterns/
J2EEPatternsAtAGlance.html

[3] Sysdeo Tomcat plug-in: http://www.
sysdeo.com/eclipse/tomcatPlugin.html

[4] Quantum DB plug-in: http://sourceforge.
net/projects/quantum/

[5] Listings for this article: ftp://www.
linux-magazin.de/pub/listings/magazin/
2003/06/Eclipse

INFO

Martin Raepple is a
Senior Consultant at
Avinci in Frankfurt,
Germany. He has
authored and co-
authored several
special-interest publi-
cations. His major topics are J2EE, EAI,
and security.

TH
E A

UT
HO

R

public class CountElements implements IObjectActionDelegate
{

private IFile xmlFile;

public CountElements()
{

super();
}

public void setActivePart(IAction action, IWorkbenchPart targetPart)
{
}

public void run(IAction action)
{

XMLElementCountWizard wizard = new XMLElementCountWizard(xmlFile);
WizardDialog dialog = new

WizardDialog(XMLProcessing.getDefault().getWorkbench().getActiveWorkbenc
hWindow().getShell(),wizard);

dialog.create();
dialog.open();

}

public void selectionChanged(IAction action, ISelection selection)
{

this.xmlFile = null;
if (selection instanceof IStructuredSelection) {

IStructuredSelection structuredSelection =
(IStructuredSelection) selection;

if (structuredSelection.size() == 1) {
Object selectedResource =

structuredSelection.getFirstElement();
if (selectedResource instanceof IFile)

this.xmlFile = (IFile) selectedResource;
}

}
}
public IFile getXmlFile()
{

return xmlFile;
}

}

Listing 2: CountElements.java (Excerpt)

