
• Profile based optimization allows the
compiler to aggregate statistics when
executing a program and optimize the
code to reflect these figures.

Even if you do not use Intel programs
there is very little danger that your pro-
grams will not support these capabilities
in future. Over the past few years, the
GCC developers have demonstrated how
quickly they can implement options of
this type. It should not take too long for
the GCC compiler to catch up and pre-
sent similar features.

Compiler Options
After completing the installation and
configuration steps (see the “Installa-
tion” box), the C and C++ compilers
should be available as icc and icpc. Ver-
sion 7.1 provides similar options to those

provided by the GCC compiler, particu-
larly the parameters that control code
translation.

However, the optimization options are
very different in parts. Table 1 provides
an overview of some of the most inter-
esting options the Intel compiler offers.
Figure 1 shows a simple compiler opera-
tion with icc converting loops to vector
operations.

The -axW flag tells the compiler to re-
write the code to use SIMD vector
instructions. The icc command will then
output the code segments it was able
to convert. In our case a loop has been
converted to SIMD code (vectorized),
and the calculatesine() (see Listing 1)
has been designated for automatic CPU
dispatching. This is the compiler’s capa-
bility to automatically create multiple

It is common knowledge that most
Linux programs are written in C or
C++, and that gcc or g++ from the

GNU Compiler Collection (GCC) [1] are
typically used to compile them. Intel also
provides C, C++, and Fortran compilers
both for Linux and Windows.

In contrast to the GCC compilers, the
Intel programs are commercial. However,
the processor manufacturer has decided
to provide its Linux compiler free of
charge for non-commercial use. Intel has
32 and 64 bit compilers for i386 and Ita-
nium series processors, but we will be
concentrating on the 32-bit variant in
this article.

Intel and GCC
One of Intel’s major motivations towards
developing a compiler was to demon-
strate and provide access to the whole
range of capabilities provided by Intel
processors. Thus, you can expect current
and future compilers to leverage the
characteristics of Intel processors. Just
like GCC, Intel also adheres to the latest
standards such as C99 for the C compiler.

The Intel compiler provides optimiza-
tions that are not yet available for other
compilers, such as the following features:
• Automatic vectorizing changes the

structure of the code to allow machine
programs to leverage SIMD extensions
(Single Instruction, Multiple Data).

• The compiler uses OpenMP to distrib-
ute parallelized (multithreaded) code
across multiple processors.

• For interprocedural optimization (to
avoid overhead caused by function
calls) icc is not restricted to file bound-
aries.

Intel offers a compiler suite designed to optimize programs written in C, C++,

and Fortran for its own processors. This article looks into embedding Intel tools

in a Linux environment and discusses the advantages they offer.

BY STEPHAN SIEMEN

Compiling C and C++ Programs with Intel’s Compiler

Speed Compiler

52 July 2003 www.linux-magazine.com

Intel C CompilerKNOW HOW

Includes: Compiler for C, C++, and Fortran,
debugger, profiler and various
other tools in addition to several
optimized libraries.

License: Proprietary
Price: Free of charge for non-commer-

cial use, otherwise US $400
(C/C++) or US $700 (Fortran) per
compiler license.

Features: Support OpenMP, MMX, SSE, and
SSE2, automatic creation of pa-
rallelized and SIMD programs.

Hardware: Any x86 processor and Intel’s
Itanium/Itanium2 64-Bit pro-
cessors.

Intel Compilers

versions of a function, each of which has
been optimized for a specific processor,
in the object code. The program can then
decide which version to launch at run-
time.

Compatibility to GCC
On Linux the GCC compilers are the
standard tools for compiling source code.
From the kernel, through the X Server to
most Linux applications, GCC – and
more specifically the C compiler – have
always played a central role in the devel-
opment of Linux. Programmers wanting
to use a different compiler always need
to ensure that it will cooperate with
GCC, or should at least be aware of any
compatibility issues.

One important point is binary compat-
ibility between the object files created by
the compiler. To be able to mix object
code created by arbitrary compilers,
most manufacturers tend to use a com-
mon ABI (Application Binary Interface)
to describe the format of object files.
Object files can only be interlinked if
they are ABI-compatible. Intel respects
the goal of a common interface, and GCC
introduced this ABI in Version 3.2, how-
ever, there are one or two slight
differences. More information on ABI is
available from [3].

First the good news: The Intel C and
C++ compilers are binary compatible to
the GCC C compiler. Object files created
by different tools can thus be linked
together. This is important as many
Linux libraries are compiled using gcc.

The bad news is that object files cre-
ated using g++ cannot be linked with

similar files created by the Intel C++
compiler. Some ABI deviations on the
part of g++ are to blame, but let’s hope
for fully compatible versions in future.

GCC Extensions
There are also some differences in the
instruction set a compiler understands.

GCC comprises a few extensions that the
ANSI standard does not include. Intel’s
C++ compiler understands the ANSI
standard, its own extensions, and most
GCC extensions. A list of all GCC exten-
sions and details on the extensions
supported by the Intel C++ compiler is
available from [5].

53www.linux-magazine.com July 2003

KNOW HOWIntel C Compiler

You will need a Linux kernel version 2.4 or
later and about 100 Mbytes of disk space to
install the Intel C++ Compiler 7.1. If you
intend to use object code compiled by the
GNU compiler in the Intel compiler, you will
also need Glibc version 2.2.4 or later.
The Intel homepage [2] states that you may
experience some issues with Red Hat 8.0, as
this distribution uses Glibc 2.2.93. Inciden-
tally, an Intel processor is not essential,
although the Intel compiler will optimize the
code for the manufacturer’s own processors
more effectively than for competitive
products.
Installation
The first step is to fill out a form at [2] and
agree to the terms of the license.The license
only permits you to compile private code.
After doing so, Intel will mail you with pre-
cise instructions at the address you
provided. Downloading the package will
place a massive 64 Mbyte tarball on your
hard disk – it is not gzipped, unfortunately.
Unpacking the tarball reveals the RPM files
and the install script.
Before you start installing, you will first need
to copy the license file from the mail mes-
sage to the directory indicated by the
INTEL_LICENSE_FILE variable. Although you
can choose any directory for this variable, it
makes sense to keep to the default at
/opt/intel/licenses.

The first thing install does is to prompt
for the compiler version you require.
(In Version 7.1) Intel offers two 32-bit and
three 64-bit variants for various kernels and
Glibc versions. Answering the prompt will
provide access to the C++ compilers and a
debugger. If you are uncomfortable with the
Intel tools, the /opt/intel/compiler70/ia32/
bin/uninstall will de-install them cleanly.
The path is still …./compiler70/… despite
the version number having moved to 7.1;
this may be designed to simplify an update
from 7.0.
Configuration
After installing icc you will need to set a few
preferences. If you installed the Intel com-
piler to /opt/intel/, the preferences for the
default options will be located in /opt/
intel/compiler70/ia32/bin/icc.cfg.You can
edit this file to reflect your preferences.
Intel provides scripts that automatically
set the PATH and LD_LIBRARY_PATH
environment variables. Programmers are
advised to load the script appropriate for
their shells before compiling, as in the
following example for Bash:

. /opt/intel/compiler70/ia32/U
bin/iccvars.sh

The admin user on a development system
should place these commands in the start
files for the shell, such as /etc/bashrc.

Installation

Figure 1: While compiling main.c the Intel compiler vectorizes a loop and designates a function for auto-
matic CPU dispatch optimization

#ifdef __INTEL_COMPILER
#include <mathimf.h>
#else
#include <math.h>
#endif

int calculatesine(double *a, U

double *b, int N) {

int i;

for(i=0; i<N; i++){
b[i] = sin(a[i]);

}
}

Listing 1: main.c

In both cases the program you create will
have a larger footprint.

Conversely, the -i_dynamic option
ensures that the compiled program will
load Intel libraries dynamically. Figure 2
shows an example of dynamically and
statically linked libraries.

Dynamic linking leads to two libraries
less with static linking, and reduces
the footprint of the executable by about
a third.

If you want to know exactly what
happens during compilation, you can
use the -v flag to instruct the compiler to
output every step.

Maths à la Intel
libimf is another Intel library. This
optimized version of the math library
libm is used by icc by default. If you pre-
fer, however, to still use Libm instead,
you will have to link it in before the
Libimf library.

To leverage the optimized functions
the program will need to include the
mathimf.h header file. Listings 1 and 2

54 July 2003 www.linux-magazine.com

To demonstrate that its C/C++ com-
pilers are on a par with GCC, Intel
intends to use its own programs to com-
pile the Linux kernel in future. It might
take some mileage before Intel gets
there, but you can follow Intel’s progress
at [6].

Linking Code
There are quite a few pitfalls to watch
out for when linking code with the Intel
compiler. Intel uses its own libraries in
part. Table 2 provides an overview of the
libraries installed with the Intel compiler.
It quickly becomes apparent that many
libraries are only available as static vari-
ants, and this typically makes sense, as it
makes it easier to distribute programs
compiled on Intel. Most target systems
will not have these libraries installed.

The libcxa library is obligatory, but it
is normally linked in dynamically. There
are two ways of changing this:
• Statically linking libcxa only: -static-

libcxa
• Statically linked all libraries: -static

show some code for a small sample pro-
gram. calculatesine.c uses a loop to
calculate 100 000 sine values.

Not very useful perhaps, but it does
demonstrate how well a program han-
dles a large number of operations. The
file first ascertains whether it is being
translated using the Intel compiler, in
order to include the right header file for
the sine function.

Figure 3 shows how this code
compiles. The -lm option that GCC
requires has been left out on purpose
for the icc call. It would slow the pro-
gram down by using Libm instead of
the quicker Libimf.

The example also shows that the
Linker cannot resolve all the references
when gcc is used.

To allow the GNU Linker to bind the
code successfully, any Intel libraries
have to be included as options. This is
not necessary when linking with icc, as it
will automatically select the correct
libraries. The following options are
required by gcc:

Intel C CompilerKNOW HOW

Option Meaning
-v Display all steps when compiling.
-i_dynamic Dynamically link Intel libraries.
-pg Create output for gprof.
-tpp6, -tpp7 Options for Pentium II/III and Pentium 4, like the GCC -

mcpu option.
-axK, -axW Enable automatic vectorization for Pentium III (SSE)

and Pentium 4 (SSE2).
-vec_report{0,1,2,3} Provides details on code modified by automatic

vectorization.
-opt_report Report on stderr containing details on optimizations.
-ip, -ipo Enables interprocedural optimization for single files or

across file boundaries.
-prof_gen, -prof_use, -prof_file Options for profile guided optimization (PGO).

Table 1: Important icc options

Library Description
libcxa.so, libcxa.a Intel’s own library for various C++ techniques, such as RTTI

(Run Time Type Identification).
libimf.a Intel’s optimized math library (similar to Libm).
libsvml.a Short-Vector Math Library; used for vectorization to run

code as SIMD.
libirc.a The compiler uses this library for various optimization

operations, such as PGO (Profile Guided Optimization).
libcprts.a, libcprts.so Intel’s standard C++ runtime library.
libguide.a, libguide.so Library for parallel programming with OpenMP.
libunwind.a, libunwind.so The Unwinder library analyzes the stack to trace function

calls.

Table 2: Intel Compiler Libraries
Program Description
icc Script for launching the C compiler.
iccfilt Helps analyze nm output.
icid Outputs information on the compiler installation.
icpi Compilation problem isolator.
icpc Script for launching the C++ compiler.
idb Intel Application Debugger.
Mcpcom Compiler – should only be launched by icc or icpc calls.
profmerge Merges PGO files; is used by the -prof_use option.
proforder Organizes PGO files.
xiar Creates static libraries, just like GNU’s ar.
xild Program for linking object files. Similar to ld.

Table 3: Tools included in the package

int calculatesine(double *a, double *b, int N);

int main() {

const int N = 100000;
double a[N], b[N];
int i;

for(i=0; i<N; i++)
a[i] = i;

for(i=0; i<100; i++)
calculatesine(a, b, N);

}

Listing 2: calculatesine.c

gcc main.o calculatesine.o -o U

calculate -L/opt/intel/compilerU
70/ia32/lib -lsvml -limf -lirc

Debugger and other Tools
In addition to the C, C++ and Fortran
compilers, the Intel package also
includes the idb debugger. Calling the
debugger with idb -gdb will allow the
debugger to understand GNU debugger
gdb commands. Intel provides a compre-
hensive manual for this tool at [9].

The package also includes a few other
programs; refer to Table 3 for an
overview. If you adhere to the standard
installation steps, the programs will be

located in /opt/intel/compiler70/ia32/
bin/. The xiar and xlid tools will create
extended libraries that the GNU pro-
grams ar and ld will not support.

A Small Example
Of course, programmers will be inter-
ested in the differences between the
GCC and Intel compiled code. Unfortu-
nately, it is difficult to produce generic
benchmarks. Benchmarks tend to test
individual capabilities. So it stands to
reason that different investigations will
produce different results. An article in
the next issue of Linux Magazine will
discuss comparisons of this type.

Intel’s compiler provide optimization tech-
niques called IPO and PGO. Both need to be
enabled using additional compiler flags.
IPO: Interprocedural Optimization
Compilers normally compile each code file
separately.This also applies to optimization.
When IPO is enabled, the compiler will view
all the source code files as a group, reorga-
nizing the whole code and automatically
adding smaller subprograms to the calling
code.Thus, IPO is particularly good at opti-
mizing programs that repeatedly call small
and medium-sized functions.
The resulting program is normally smaller
and quicker. However, this makes the code
difficult to debug and can change the way a
program works at times. It makes sense to
enable the -ipo option when you have fin-
ished developing the program to test the
results.

PGO: Profile Guided Optimization
Optimization normally takes place during
compilation, however, PGO accesses the fin-
ished program.The compiler aggregates
statistics from multiple test runs in order to
perform optimization steps.The following
steps are required to use PGO:
• Enable the -prof_gen option when compil-

ing your source code.
• Run the compiled program multiple times

using typical options and input.The run-
times of the individual program
components, referred to as profiles, are
stored in temporary files.

• When re-compiling your code, now stipu-
late the -prof_use option to optimize the
code so that the most commonly used
subroutines are as quick as possible.This
also outputs a summary of the optimi-
zation steps.

IPO and PGO

Figure 2: After compiling, a call to ldd shows the libraries that the program will load dynamically. Stati-
cally linked libraries are not displayed

advertisement

the program, the first line (real) contains
the total time from launching to termi-
nating the program. The lines that follow
(user and sys) show how long the user
program and the operating system took
to complete the process.

Table 4 contains four measured values
(user time). After running these tests we
can see that the Intel results are a lot
quicker than those for GCC. This is also
true after enabling optimization.

This trivial ad hoc test shows the kind
of improvements that an Intel compiler
is capable of providing, particularly in
the case of tasks that make heavy use of
maths.

Speedy Fortran
Not everyone programs in C and C++.
Fortran is still used quite extensively in
scientific research. Intel also provides a
Fortran compiler subject to the same
conditions and on the same website [2]
as the C/C++ counterparts. The com-
piler supports Standard ISO Fortran 95
and OpenMP for parallel programming.

The former makes the Fortran compiler
extremely interesting for programmers
who need access to the new features For-
tran 95 provides, but g77 does not.

Unfortunately, object files compiled
with the GNU g77 compiler cannot
be linked together with Intel Fortran
object files. As in the case of the C++
compiler this again boils down to ABI
incompatibilities.

Conclusion
Intel’s compilers are a useful way
of leveraging the extra power out of
an Intel processor. Intel seems to be
making an honest effort to adopt its
compilers to the GCC world. Compiling
the Linux kernel will provide a genuinely
difficult test of Intel’s progress in this
area.

It remains to be seen, how the Linux
Community will take to the Intel com-
pilers. Although these programs are
available free of charge for non-commer-
cial use, they are neither Open Source
nor free software. ■

56 July 2003 www.linux-magazine.com

Intel C CompilerKNOW HOW

[1] GCC: http://gcc.gnu.org
[2] Intel Compilers: http://www.intel.com/

software/products/compilers/
[3] ABI Definition: http://www.codesourcery.

com/cxx-abi/
[4] ABI Information for GCC: http://gcc.gnu.

org/gcc-3.2/c++-abi.html
[5] Compatibility of Intel Compilers and GCC:

http://www.intel.com/software/products/
compilers/techtopics/
LinuxCompilersCompatibility702.htm

[6] Using Intel compilers to compile the ker-
nel: http://www.intel.com/support/
performancetools/c/linux/kernel.htm

[7] Intel’s Linux pages: http://www.intel.
com/support/performancetools/c/linux/

[8] Benchmarks: http://www.coyotegulch.
com/reviews/

[9] IDB Manual http://www.intel.com/
software/products/compilers/techtopics/
iidb_debugger_manual.htm

INFO

Compiler Call Runtime
gcc 1.05 seconds
gcc -O2 -march=pentium4 0.90 seconds
icc 0.79 seconds
icc -axW 0.40 seconds

Table 4: Runtimes

Figure 3: The Intel compiler uses the optimized Libimf library for mathematical operations. To link the
results using gcc, the libraries need to be specifically included

In the following sections we will be
using a mini-program from Listings 1
and 2 as an example, to demonstrate the
main differences between the various
compilers and options.

We can use time to ascertain the run-
times for the program versions. This may
not be a precise scientific approach, but
it is good enough for our purposes and
simple to understand.

The time programname command out-
puts three values of time. When running

Stephan Siemen is a research scientist
at Essex University (UK), where he is
involved in developing software for
3D representation of climatic systems
and teaching students computer
graphics and programming.TH

E A
UT

HO
R

Intel provides a number of PDF document
downloads at [2].This site also hosts the
FAQs and support pages [7]. Documentation
is in English and it is also quite easy to locate
various comparisons between GCC and Intel
compilers on the Web – at Coyote Gulch [8],
for example.

The Intel compiler package also provides a
fair amount of documentation.The
/opt/intel/compiler70/docs/ directory con-
tains HTML and PDF docs on the compiler,
such as a User’s Guide and the Debugger
Manual.The Tutorial in /opt/intel/com-
piler70/training/optimize/index.htm is also
quite interesting. But unfortunately, the
documentation tends to concentrate on the
Windows version of the compiler, although
it does provide useful information on the
subject of optimization.

Documentation

