
Zack’s Kernel News

16 July 2003 www.linux-magazine.com

The Kernel Mailing List comprises the core of
Linux development activities.Traffic volumes
are immense and keeping up to date with 
the entire scope of development is a virtually
impossible task for one person. One of the
few brave souls that take on this impossible
task is Zack Brown.
Our regular monthly
column keeps you up 
to date on the latest
discussions and
decisions, selected and
summarized by Zack.
Zack has been 
publishing a weekly digest, the Kernel Traffic
Mailing List for several years now, reading
just the digest
is a time consuming task.
Linux Magazine now provides you with 
the quintessence of Linux Kernel activities
straight from the horse’s mouth.

INFO

NEWS Kernel

■ Compressing code
Data compression is often proposed
whenever space gets tight. Most Linux
kernel binaries are compressed on disk,
and uncompressed at boot time; but
there are many opportunities to eek out a
few more bytes here and there. The
question is always, is the amount of
space saved worth the additional time it
takes to compress and uncompress it?

Two attempts were made in April to
add compression features to the kernel.
The first did not turn out so well; the
second still has a chance. Timothy Miller
had the idea that, instead of swapping to
disk, data could be compressed in RAM,
thus freeing up space for other processes
without incurring the overhead of disk
accesses. Because a hard disk contains a
rotating slab of metal that must be read
from and written to by moving a large
sliding arm, where as RAM has no mov-
ing parts, it should be clear that avoiding

disk accesses has the potential to really
speed things up in just about any situa-
tion. It’s not unreasonable to think that
data compression might be faster than
disk accesses; in fact, the original Mac
OS implemented such a thing and called
it ‘RAM Doubler’. Inaky Perez-Gonzalez
had also made his own attempt under
Linux in the 2.2 days, and though he’d
successfully shrunk RAM usage, the
machine slowed to a crawl.

A more recent attempt, hosted by the
Department of Computer Science at the
University of Sao Paulo, in Brazil, has
also had success, although the project
seemed to lose momentum in late 2002.
It also suffered from technical limita-
tions, e.g. not supporting SMP or
pre-emption. Timothy actually tried the
code. For systems with large amounts of
RAM, it seemed to have a negative
impact on overall speed.

■ Numbering devices
One of the big controversies in Linux
kernel development is the device num-
bering system. Hardware manufacturers
keep pumping out new devices, and
computers keep coming out that can
hold more and more of them, and the
operating system has to keep track of
them all somehow.

So far, this data has been defined in
the source tree and stored in some small
variables; but for a long time there has
been a movement to ditch the static
numbering system, in favor of one that
defines these numbers dynamically for
each running system.

This is not as easy as it appears, as
demonstrated by the fact that, while
Linus Torvalds strongly favors that
approach, many other developers includ-
ing Alan Cox have chosen to disregard
that preference in the 2.4 tree, and to
continue extending the static numbering
features to accommodate the rising avail-
ability of devices and scalability of
individual systems. In April, Andries
Brouwer proposed a patch to increase the
size of the kdev_t variable, used to hold

these device numbers, from 16 bits to 64.
It’s generally agreed, even among crit-

ics of static numbering, that 16 bits is
starting to get uncomfortably tight, while
64 bits would satisfy all needs for many
years to come. There are technical prob-
lems with any solution, including ones
that favor static numbering, although
they are not as serious as those con-
fronting dynamic numbering. But
dynamic numbers have the advantage of
being a permanent solution, while any
static numbering system will one day
run up against the same problems that
confront it now.

Even critics of dynamic numbering
agree that it’s not a bad idea, just very
difficult to get right. Folks like Roman
Zippel have been arguing very strongly
that the kernel is rapidly approaching a
time when dynamic device numbering
will be a real possibility; and that some
parts of the kernel, like the SCSI code,
already successfully use dynamic num-
bering.

He argues that as long as the 16 bit
device numbering scheme will hold out,

developers should wait and push for the
‘proper’ solution.

But other developers say they need 
a solution in the very short term, to 
deal with real life hardware that needs 
to work properly now, not in a few 
years after the next development cycle is
completed. For now, the controversy
continues unresolved. ■

The second attempt at data compres-
sion in April took a different tack,
though it came from the same person.
This time, instead of targeting all of
memory management, his idea was 
to compress kernel text messages, by
identifying the most common words and
replacing them with single characters,
which would then be substituted back to
the original words when needed. It
turned out that this kind of string com-
pression was very popular in the old
days, when every byte counted; so a
variety of real, working methods are
available for such things.

After a few first attempts, Timothy
found that he could save as much as 
80K in the compiled binary. Although
there are still questions about how to
integrate this into the build system, it
seems clear there is something to be
gained by it. ■



17www.linux-magazine.com July 2003

Kernel NEWS

■ USB Gadget
In March, David Brownell announced a
new kernel API, to be used by USB
peripherals that embed Linux within
themselves. Drivers using this “USB Gad-
get” API will be portable to a wide
variety of devices, while USB hardware
that embeds Linux will be able to make
use of a wide variety of device drivers.

This project comes out of the strange
situation, that many USB devices can
themselves run Linux, and so ambigui-
ties creep into the discussion, when
talking about Linux ‘support’ for a given
device. Does it mean that a Linux system
can communicate with that device, or
that the device itself can use Linux to
communicate with other systems?

To clear up the issue, many USB devel-
opers have agreed to call drivers running
on the main host system, “USB device
drivers”; while drivers running on the
peripheral devices themselves are called,
“USB gadget drivers”. David’s API is for
use by “gadget drivers”.

Most embedded systems have many
unique qualities, born out of the market-
ing and technical requirements for the
gadget. As such, it can be tempting to
write drivers specifically for the particu-
lar hardware involved. The drawback of
this is that this software may be very dif-
ficult to port to other embedded systems.

David’s new API provides a generic set
of function calls that can be used by any
gadget driver to communicate with the
underlying hardware. As such, develop-
ers coding for one gadget can very easily
migrate their work over to a new gadget
without having to start over from
scratch. ■

■ User-Mode Linux
Kernel debugging has become more and
more difficult over the years. With sup-
port for more and more processors, and
greater and greater threading capabili-
ties, the problem of identifying exactly
where a problem occurs has become
vastly more complex.

Couple this with the fact that, while a
user program can crash and be restarted
fairly quickly, a kernel crash generally
means several minutes wasted during a
reboot. One way around this has been to
run the kernel on itself as a user process.

User-Mode Linux, or UML, maintained
by Jeff Dike, has gradually become a sig-
nificant debugging tool, because of its
ability to boot and control kernel images
very quickly. Recently Werner Almes-
berger produced a new project, called
UMLSIM, which extends UML to allow
fine-grained control over the flow of time
as it appears to the running kernel.

Using UMLSIM, it is possible to set
breakpoints within the kernel itself, and
control its behavior from outside. This
can be used to call functions, force func-
tions to return, and read and write
variables and arguments. As it turns out,
Karim Yaghmour and others have been
working along similar lines, producing a
project they call genevent.

While this improves upon Werner’s
breakpoint feature, UMLSIM still goes a
bit farther than genevent, in terms of
minimizing the number and kind of
changes that must be made to the kernel,
in order to make use of these features.
Perhaps UMLSIM and genevent will feed
off of each other, or even merge into one
project at some point. ■

■ More disks
Recently, Badari Pulavarty offered up a
patch to overcome the limitation on the
number of disks that could be simultane-
ously connected to a Linux system. He
beat the value of 256, leaving no known
value in its place. In his tests, he man-
aged to do simultaneous I/O on 4000
disks before using up all of his memory.

So as far as anyone knows, the maxi-
mum number of disks is now limited
only by the resources available to sup-
port it. Each disk must be represented in
the system by a data structure, which

uses up RAM; and these data structures
must be traversed, in order to give the
user access to them; which uses up time.

For journaled filesystems there is the
problem of dealing with the journal data.

Badari had given everyone a 4000 disk
mountain, and they were going to climb
it “because it was there.” This situation
also goes back to the ‘static vs. dynamic
device numbers’ controversy, since it is
now becoming practical to have an
ungodly number of devices attached to a
given system at any time. ■

■ Radeon fork
Benjamin Herrenschmidt has forked 
the Radeon Framebuffer code base 
away from Ani Joshi. Ani apparently
stopped applying patches and virtually
disappeared sometime in mid 2002,
which became frustrating for some 
folks. Finally after about a year, 
Ben announced the fork and put out his
own release, incorporating a number 
of patches.

In his announcement, he said he
would continue to maintain the fork
until Ani either officially stepped down
as maintainer, or else incorporated all
the patches that had been sitting around
for so long. Before the fork, the Radeon
code had been somewhat usable, though
still clearly in need of development.
Problems included incorrect display of
the cursor, crashes, and other issues.

This is par for the course of any devel-
opment effort, and under Ben the same
technical problems remain, though folks
have already noticed improvement in
various areas. Ben’s plan is apparently to
continue to maintain the existing code-
base in the 2.4 kernel series, and do a
complete rewrite for 2.5; the 2.5 tree, at
least in theory, is in a feature freeze 
in preparation for 2.6 or 3.0; according 
to tradition, that may or may not mean
anything.

It is possible that a Radeon rewrite
could still make it in before the next sta-
ble series. As of this writing, Ani has yet
to be heard from on the issue. Typically,
code forks have been seen as justified
when the current maintainer fails to
accept good patches or put out timely
releases; while developers make every
effort to provide those patches to the
maintainer in a useful way. This seems
to be the case here, and as a result no
one seems to have any complaints about
Ben’s decision.

Unfortunately, not all code forks can
be so reasonable or peaceful. Albert D.
Cahalan’s and Rik van Riel’s diverging
procps trees can attest to that.

Theirs was also a case of the main-
tainer just dropping out, although in the
procps situation, the code languished for
quite, and was finally picked up quietly
by multiple people, who discovered the
redundancy only later, and then were
unwilling to merge their work. ■


