
first. An emulator allows you to test your
PDA programs as part of the develop-
ment process. The Qt/e [3] package
provides an emulator called qvfb (“Qt
Virtual Framebuffer”) (see Figures 1–3).

As soon as your program is stable and
provides the required functionality, you
can cross-compile it for the PDA and
install the binary on your handheld. This
approach allows you to use typical C++

development tools like gcc, gdb,
and valgrind (to check for
buffer overflows and other
programming errors) [4], and
means you will not need to

install and test the software on
the PDA until the rest of the develop-

ment process has been completed.
Of course you can use a standard edi-

tor like vi or Emacs to write your source
code, but KDevelop 3 [5,6], which will
probably be released at the same time as
KDE 3.2 (although it is already extremely
stable), provides an integrated developer
environment with OPIE support.

As is the case for many other projects,
you can get the latest OPIE version from
the CVS repository (see the “OPIE Lat-
est” box). It contains patches for Qt/e
and will mean a bit more work. If you
simply want to take a quick look at OPIE
(not to mention avoiding the frustration
of a CVS version that does not compile),
you can simply use the opie-devel-
g++3_x86_0.9.1-ml2.tar.gz from [7].

No matter whether you run the
standard Qtopia desktop for
Linux on your PDA or have

made the move to OpenZaurus (see page
26) with the Open Palmtop Integrated
Environment, OPIE [1], there seems 
to be no lack of software for the hand-
held at first sight. After all, hordes of 
GUI programs for the Linux desktop also
use Trolltech’s [2] Qt library. It is simply
a question of replacing the library 
with Qt/e, the Qt edition for embedded
devices, linking and cross-compiling 
for the Zaurus PDA’s ARM processor – or
is it?

In fact, it is not that simple. For one
thing the PDA has nothing like the com-
puting power or memory resources of a
PC or Mac. For another, most GUI pro-
grams for the Linux desktop only make
sense when displayed on a PC screen.
Displaying them in the same scale on the
minute PDA display involves irritating
and confusing scrolling operations and
severely impacts the usability of the
application. Additionally, there are
bound to be some applications that make
sense for a PDA, but not for a PC.

So, application development for the
PDA cannot simply be dismissed as a
side effect of desktop software develop-
ment. Although the output device
requires a different approach to software
design than a PC or Mac, you should not
need to familiarize yourself with new
development techniques.

Setting Up the Desktop
Because of the PDA’s restricted re-
sources, programmers will tend to use a
desktop computer (a PC or Mac) for their
development work. This means setting
up a suitable developer environment

If you are familiar with the Qt Toolkit, you may well have been surprised to dis-

cover how little skill it takes to write programs for the free PDA desktop, OPIE.

The project allows even inexperienced programmers to work constructively.

BY CARSTEN NIEHAUS AND PATRICIA JUNG

Software Development for Linux PDAs

Zaurus Fodder

34 July 2003 www.linux-magazine.com

OPIE ProgrammingCOVER STORY

If you decide to start programming for OPIE,
you should consider using the latest version
of OPIE and Qt/e.The following commands

cvs -d:pserver:anoncvs@cvs.U
handhelds.org:/cvs login

(password: anoncvs) and

cvs -d:pserver:anoncvs@cvs.U
handhelds.org:/cvs co opie
export OPIEDIR=/path/to/opie/

allow you to create a local copy of the OPIE
CVS repositories; and cd $OPIEDIR; cvs up will
keep your copy up to date.The $OPIEDIR/qt
directory contains a number of patches for
Qt 2.3.x, which can be installed as follows,
after unzipping the qt-embedded-2.3.5.tar.gz
archive

cd qt-2.3.5; export QTDIR=`pwd`
cat $OPIEDIR/qt/qte234-for-opieU
091-gfxraster.patch | patch -p0

After copying the OPIE specific configuration
file to the Qt tree using the following com-
mand

cp $OPIEDIR/qt/qconfig-qpe.h U

$QTDIR/src/tools

you can compile the library (after invoking
configure as shown in the text).
As soon as the user interface compiler uic
has taken up residence in $QTDIR/bin (cf. the
relevant text passage), you can start to com-
pile the latest OPIE version:

export PATH=$PATH:$QTDIR/bin
cd $OPIEDIR
make clean
make

Again, before launching make, you can use
make menuconfig to change the footprint,
target platform and other OPIE charac-
teristics. In fact, this is often essential, as 
not all the program components will
compile.You can use make menuconfig to
remove the misbehaving components from
the compiler pool. More information is
available from [13].

Qmake instead of tmake
OPIE developers tend to prefer the more
powerful qmake tool rather than the tmake
Perl script to generate makefiles from pro-
ject files (see text). As Trolltech will not be
including qmake until Qt version 3.0, you will
find it in the OPIE CVS tree.
If you are using qmake instead of tmake, set
the QMAKESPEC variable instead of
TMAKEPATH in Listing 1:

export QMAKESPEC=$OPIEDIR/U
mkspecs/linux-g++/

The extended syntax of qmake allows you to
add the following line to Listing 2:

include ( $(OPIEDIR)/include.pro )

The included project file contains generic
settings for OPIE projects and is only
available in the OPIE CVS version.

OPIE Latest



It contains a customized version of
Qt/e for OPIE and the OPIE libraries,
although neither of them are exactly
spring chickens. Again this will involve
some work on your part: If you have not
installed distcc [11] to provide distri-
buted compilation of C/C++ code, you
will need to edit the qt-2.3.4-beta2/con-
figs/linux-x86-g++-shared file and
replace the word distcc in four sections
(while setting the SYSCONF_CXX,
SYSCONF_CC, SYSCONF_LINK, and
SYSCONF_LINK_SHLIB variables). Then
assign the path to the qt-2.3.4-beta2
directory to the QTDIR environment vari-
able, change to that directory, and type
the following to start compiling:

./configure -qconfig qpe -depthsU
8,16,24 -qvfb -vnc -system-U
jpeg -system-libpng -system-zlibU
-gif -no-xft make

Link uic-qt2 from [7] to $QTDIR/bin/uic
(and while you are at it, qvfb-qt2 from
[7] to $QTDIR/bin/qvfb) before going 
on to create the OPIE libraries. You will
first need to set the LD_LIBRARY_PATH
to point at $QTDIR/lib to ensure that 
the Qt/e binary you are compiling will
be found. After doing so, follow 
the instructions in the opie/README.
NEWBUILD file. As the basic confi-
guration, which you can copy from
opie/def-configs/opie to opie/.config is
perfectly ok for the time being, you can
leave out the last step, make menu
config, and simply type make.

After completing these steps, you will
of course have compiled libraries and
tools for the PC. As the PDA does not
have an Intel compatible processor, but
an ARM processor instead, you cannot
link software for the PDA against the PC
libraries. In other words, you will need

to re-compile the Qt/e and OPIE libraries
for the PDA using a cross-compiler [10].

To do so, you should copy the whole
qt-2.3.4-beta2 directory to qt-2.3.4-
beta2_pda, for example.

A number of environment variables,
specifically QTDIR, need to be set to
reflect the task in hand, that is, compil-
ing a test version of an OPIE program for
the PC, or cross-compiling a version for
the PDA. A script like the one shown in
Listing 1 will help you avoid confusion
while doing so. Running the script with-
out any arguments will set the variables
for a PC compilation. Providing any
argument will set up the environment for
cross-compilation. As a side effect, the
script also sets the OPIEDIR variable that

points to the OPIE root directory, and
TMAKEPATH that points to the configu-
ration directory for the tmake tool that
also ships with opie-devel-g++3_x86_
0.9.1-ml2.tar.gz.

The Framework
At last you can start creating an OPIE
program designed to display information
about a file – to be more precise, the file
size, the last modification date, the
owner and the access privileges. All of
these functions would be useful for a file
manager program.

To do so, the program launches a dia-
log box that displays the file and
directory tree. When the user selects a

35www.linux-magazine.com July 2003

COVER STORYOPIE Programming

#!/bin/bash

export OPIEDIR=$HOME/opie/opie
if [ "x${1}x" = "xx" ]; then

export QTDIR=$HOME/qt-2.3.4-beta2
export TMAKEPATH=$HOME/tmake/1.8/lib/qws/linux-generic-g++

else
export QTDIR=$HOME/qt-2.3.4-beta2_pda
export TMAKEPATH=$HOME/tmake/1.8/lib/qws/linux-sharp-g++

fi
export PATH=$QTDIR/bin:$HOME/tmake/1.8/bin:$PATH
export LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH

Listing 1: Compiling or cross-compiling?

Most software projects opt to display desk-
top texts (such as menu items or error
messages) in English. Programs designed for
non English speakers need to be internation-
alized  and localized if these messages are to
be displayed in the local language. Qt pro-
vides the QApplication::translate() function
for this purpose, allowing the program to
display the required desktop language at
runtime.This is typically the language
defined by the appropriate system variable.
Programmers only need to watch out for
two things when internationalizing a pro-
gram – any messages the user may be
confronted with at any time must be
wrapped in the tr() function.The following
example shows the File menu:

menubar->insertItem( tr( "File" U

), file );

The program will then pass this string to
QApplication::translate() at runtime.The
function locates a translation for “File”in the
selected language within the translation file
and simply replaces the string. Assuming the
translation is available Qt – thanks to Uni-

code (UTF8) support – can even show GUI
elements with Japanese or traditional Chi-
nese texts.
Programmers should also get used to han-
dling arguments as follows:

label.setText( "The City %1 has U

%2 inhabitants").arg(cityName).U
arg(cityInhabitants);

The following code can cause a problem:

QString city_text = tr( "The U

City" ) + cityName + tr( "has" )U
+ cityInhabitants + trU
( "inhabitants" );
label.setText( city_text );

The reason is that this assumes that English
syntax (and thus the order of the argu-
ments) can be translated word for word to
any other language.This does not even
apply to languages closely related to English
and is particularly disastrous in the case of
languages written from right to left.
The Qt Linguist [9], which is also available
from [7], provides some useful tools for local-
ization, such as lupdate and lrelease.

Translation

TEMPLATE = app
CONFIG = qt warn_on release
DESTDIR = $(OPIEDIR)/bin
HEADERS = mainwindow.h
SOURCES = main.cpp mainwindow.cpp
INCLUDEPATH += $(OPIEDIR)/include U 

$(OPIEDIR)/libopie
DEPENDPATH += $(OPIEDIR)/include U 

$(OPIEDIR)/libopie
LIBS += -lqpe -lopie
TARGET = testapp

Listing 2: The project file



QPEMenuBar is a class that was
specifically extended for PDAs. It inherits
from QMenuBar. (To understand the
name, recall that Trolltech’s Qtopia desk-
top for PDAs was formerly called QPE –
“Qt Palmtop Environment”.)

The lines that follow (Listing 4) are
responsible for defining the menu and
the actions it invokes. First, a new menu
is created, and inserted into the menu
bar in line two. This is also the point
where the name File, the text displayed
to users later (see Figure 1), is assigned
to the menu. The “Translations” box
explains the tr() command, which is
used here and at other positions in the
source code.

When selected, a menu should display
sub-items that in turn invoke some kind
of action. To do so, an instance, a, of the
class QAction is created. A QAction
represents an action in a menu or
toolbar. In our example, the menu is
called New. When selected, it opens a
dialog box where the user can select a
file.

A picture says more than a thousand
words; this is why OPIE provides a
whole range of icons that allow you 
to enhance your menu entries. Resource::
loadPixmap( “new” ) places an icon 
next to the New entry to illustrate the

action invoked by this entry, that is,
selecting a file.

Signals and Slots
The second to last line in Listing 4 shows
one of the most important tricks for Qt
programmers, the signal-slot mecha-
nism. Every object derived from the
QObject class (these include every GUI
element, for example) can use the emit
function (often automatically) to gener-
ate a signal when an event occurs. For
example action a emits the signal acti-
vated() when the relevant menu item
has been selected. Signals are collected
by slots linked to each individual signal.

In our example the slotfileNew() slot of
the same (this) class, MainWindow,
reacts to the activated() signal. The slot
is a normal function that can also be
called directly. To allow the function to
be linked to a signal in Listing 4, the slot
is declared as such in the mainwindow.h
header file:

private slots:
void slotfileNew();

The implementation of the MainWindow
::slotfileNew() function in mainwindow.
cpp specifies what happens when a 
user enables the New menu item: in 

file a new dialog box appears displaying
the file information.

The program is called testapp and the
source code is available from [12]. We
will be creating a project directory of the
same name in which the project file
testapp.pro (Listing 2) and the source
code will be stored.

testapp.pro uses the HEADERS and
SOURCES lines to specify the project
files. As it is an OPIE program, the binary
we will be creating (TARGET), testapp
must be linked against libopie; the LIBS
+= lopie directive tells the linker this.

We can now pass the project file as an
argument to the tmake tool to create a
makefile. If you have previously installed
a developer environment for a desktop
version of Qt, you can alternatively use
the newer qmake tool, which is available
with Qt 3.0 or later. If you have any trou-
ble with this step, the testapp.tar.bz2
tarball at [12] includes a functional
makefile, although you will need to mod-
ify a few paths.

Listing 3 finally contains some
programming. The application itself 
is created as a QPEApplication type
object and displays a MainWindow type
object. This is the only self-written class
the program uses. It is implemented in 
the mainwindow.cpp file; extracts of this
file follow.

The Main Thing
MainWindow derives from the Qt
QMainWindow class, which implements
the main window in a GUI application.
Objects belonging to this class can con-
tain toolbars, a status bar, and a menu
bar. To keep the code readable, our sam-
ple program will only have a menu bar:

QPEMenuBar *menubar = new U

QPEMenuBar( this );

36 July 2003 www.linux-magazine.com

OPIE ProgrammingCOVER STORY

#include <qpe/qpeapplication.h>
#include "mainwindow.h"

int main(int argc, char **argv)·
{

QPEApplication a(argc, argv);
MainWindow mw;
a.showMainWidget(&mw);
return a.exec();

}

Listing 3: main.cpp

QPopupMenu *file = new QPopupMenu( this );
menubar->insertItem( tr( "File" ), file );
QAction *a = new QAction( tr( "New" ), Resource::loadPixmap( "new" ),U
QString::null, 0, this, 0 );
connect( a , SIGNAL( activated() ), this, SLOT( slotfileNew() ) );
a->addTo( file );

Listing 4: A menu

Figure 1: The sample program
in qvfb

Figure 2: The File dialog box
being created in our example

Figure 3: The file information is
shown



this case a file dialog box is created 
(see Figure 2).

The signal-slot mechanism simplifies
communications between objects as the
objects involved do not need to see each
other. Additionally, the mechanism is
typesafe, that is, it can handle all types
and any quantities of data.

A Special OPIE Class
Up to this point – with the exception of
the embedded icon – we have not used
any classes and functions from the OPIE
API itself. The file dialog displayed by
the slotfileNew() function changes this.
This dialog that provides convenient file
selection functions is implemented by
the OFileDialog class. If the user then
clicks on OK, the following line of code
will store the return value of the OFileDi-
alog function getOpenFileName, that is,
the name of the selected file with its full
path, in a private class variable of the
MainWindow class:

QString fileName=OFileDialog::U
getOpenFileName( OfileSelectorU
::EXTENDED , Qdir::U
homeDirPath() );

The next step is to parse the required
information for this file. Qt/e uses the
QFileInfo class for this purpose. The
class allows for simple parsing of the file
size and privileges, for example.

The MainWindow class saves the file
size in the private class variable fSize,
which is an unsigned int type, the owner
in QString fOwner, the group in QString
fGroup, the file name in QString file-
Name and the last modification date and
time in fLastMod, which is an instance of
the Qt QDateTime class, specifically
designed for this purpose.

Listing 5 shows how these variables
can be filled with the values pertaining
to the selected file. The MainWindow
getFileInfos() function is responsible for
this; it expects to be passed a file name
when called.

We still need to display this informa-
tion. Lines 64 through 68 in the
mainwindow.cpp file take care of this by
writing the contents of the variables
(and an explanation) to five QLabel type
objects created for this purpose:

fileNameLabel->setText( tr( U

"Filename: %1").arg( U

fileName ) );

To distribute the five labels evenly over
the amount of space available for the
display, as shown in Figure 3, they are
placed in a QVBoxLayout one after
another. QVBoxLayout arranges any wid-
gets assigned to it vertically.

QVBoxLayout *v_layout = new U

QVBoxLayout( mainWidget );
[...]
v_layout->addWidgetU
( fileNameLabel );

The QLabel class provides various ways
of manipulating label texts, changing the
font size, type or justification, for
example. The sample program utilizes
this feature in the Linux Magazine
title shown in Figure 3; the title is
described by a label object called
topicLabel:

topicLabel->setAlignmentU
( AlignHCenter )

will center the text;

QFont f1 ( "times", 18, QfontU
::Bold );
topicLabel->setFont( f1 );

will display the title in 18 point Times
bold. There are also ways of enabling or
disabling line wrapping.

Ready, steady, go!
However, the prettiest of programs is
useless, if you cannot test it. To do so,
we finally get round to launching the
qvfb emulator. Do not worry about the
black window that appears – the test

application should be up a short time
later. If required, you can type the
following command

QWS_DISPLAY=QVFb:0

to ensure that the display gets to the
right spot. If you used tmake or qmake to
create a makefile for the test program,
you can simple enter make in the project
directory to start compiling. But even if
everything works out fine, you might be
surprised to discover that the project
directory does not contain a single
binary executable. The executable will
be in the $OPIEDIR/bin directory in-
stead. If you launch the program with
the -qws option, qvfb will suddenly
spring to life (see Figure 1).

If you have enjoyed this excursion,
and are looking to embark on your own
OPIE projects, you will be pleased 
to hear that help is at hand if you
encounter difficulties. The OPIE home-
page provides more information and you
can add your name to the opie-devel
mailing list, which OPIE developers 
use to exchange ideas and help each
other out. ■

37www.linux-magazine.com July 2003

COVER STORYOPIE Programming

void MainWindow::getFileInfosU
( QString fName )
{

fileInfo.setFile( fName );
fSize = fileInfo.size();
fOwner = fileInfo.owner();
fGroup = fileInfo.group();
fLastMod = fileInfo.U
lastModified();

}

Listing 5: Parsing file
information

[1] OPIE: http://opie.handhelds.org/
[2] Trolltech AS: http://www.trolltech.com/
[3] Qt/e download: ftp://ftp.trolltech.com/

qtopia/source/qt-embedded-2.3.5.tar.gz
[4] Valgrind:

http://developer.kde.org/~sewardj
[5] KDevelop 3 download:

http://www.kdevelop.org/index.
html?filename=download.html

[6] KDevelop 3 Tutorial: http://www.
kdevelop.org/doc/tutorial_qtopia/

[7] Developer tools for OPIE:
http://opie.net.wox.org/tools/

[8] Compiling Qt/e for OPIE:
http://opie.handhelds.org/docs/
opie-cookbook/x22.html#AEN81

[9] Qt Linguist Manual: http://doc.trolltech.
com/3.1/linguist-manual.html

[10]Preparing to cross-compile:
http://opie.handhelds.org/docs/
opie-cookbook/x116.html

[11] Distcc: http://distcc.samba.org/
[12] http://www.handhelds.org/~cniehaus/
[13] http://opie.handhelds.org/wiki/index.

php/SourceCode

INFO


