
Refer to the article at [2] for more
information.

What’s New in Snort 2.0?
In fact, Snort has a whole bunch of new
features to offer. Some of them will be
immediately apparent to administrators.
For example, a revised port scan detec-
tor, portscan2, a detector for polymor-
phic shell code fnord, and a performance
monitor, perfmonitor, have been avail-
able since Version 1.9. Version 2.0 adds a
new pre-processor HTTP Flow. Unfortu-
nately, Fnord did not make it into
Version 2.0.

However, the major enhancements in
Version 2.0 mainly apply to Snort itself.
The developers have completely replaced
the detection engine with a new and
quicker version.

HTTP Flow
As a pre-processor, the HTTP Flow
Analyzer is capable of splitting commu-
nications between a webclient and a
webserver into two parts. The detection
engine can handle these flows sepa-
rately. Snort assumes that about five
percent of the traffic will be caused by
the client and the remaining 95 percent
by the server. The headers in a server
response are only a few hundred bytes,
and comprise a mere three to five per-
cent of data transfers.

The HTTP Flow Analyzer makes use of
this knowledge and offloads only the
client flow and the headers from the
server flows to the detection engine, as
malevolent attacks should be apparent
based on this information. This typically
helps reduce the data that needs analyz-
ing by 80 percent.

The pre-processor supports two differ-
ent modes; Quick and Full. In Quick
mode, it individually examines each
packet.

To do so, it needs to know on what
ports the webserver is listening. Also, it
needs to know the number of bytes to be
investigated in the webserver response.
A typical call is as follows:

preprocessor httpflow: quick U

depth 200 ports 80 3128

This will cause the pre-processor to ana-
lyze the first 200 bytes of the server re-
sponses originating at ports 80 and 3128.

In Full mode HTTP Flow uses the
Stream4 pre-processor to reassemble the
individual packets that make up the traf-
fic. Stream4 only releases packets with a
valid TCP status for analysis. In this
mode, you do not need to supply the
header lengths, as the pre-processor will
automatically recognize them.

Snort, the Open Source NIDS (Net-
work Intrusion Detection System)
by Martin Roesch, has developed

into a powerful tool since it was first
released in 1998. Originally a simple
packet sniffer based on the Libpcap lib-
rary, the tool simply compared packets
to a very simple signature database.

By now Snort has moved up the scale
from a lightweight NIDS to an all en-
compassing system that performs well
when compared with expensive,
commercial products. Amongst other
features Snort offers IP defragmenting,
TCP stream reassembly and UNICODE
decoding.

These terms are indicative of the kind
of packet normalization that Snort per-
forms to provide for uniform data
representation.

After this step NIDS compares the
packets with rules stored in an compre-
hensive signature database, thus re-
cognizing potential attacks. When Snort
detects an attack, it uses a number
of output plug-ins to alert whoever is
responsible.

This article introduces the enhance-
ments found in the Snort 2.0 release
candidate, and describes their con-
figuration, avoiding any functions
already available in previous versions.

The Snort Network Intrusion Detection System is the most

commonly used NIDS worldwide. Version 2.0, which is due for

release shortly, recognizes attacks up to 18 times quicker than

its predecessor. BY RALF SPENNEBERG

First Impressions: Completely revised Snort Version 2.0

Super Sniffer

58 July 2003 www.linux-magazine.com

Snort 2.0SYSADMIN

Ralf Spenneberg is a
freelance Unix/Linux
trainer and author.
Last year saw the
release of his first
book:“Intrusion
Detection Systems for
Linux Servers”. Ralf
has also developed various training
materials.

TH
E A

UT
HO

R

Snort and the Snort pig logo are trademarks of Sourcefire, Inc.

Brian Caswell and Jeff Nathan presented a
new Perl Patch in their CanSecWest/core03
presentation: Advanced IDS [5].This new
Snort Perl Patch for Snort 2.0 adds two new
keywords to the Snort rule language:perl
and perlre.
The perlre keyword will perform a full regu-
lar expression matching on the contents of
the inspected packet.The perl keyword pro-
vides runtime execution of any perl code.
The perl code is stored in a separate file
snort.pl which allows for an easy update and
modification by the user.
Using these keywords much more complex
rules can be created.

New Addon:
Snort 2.0 Perl Patch

preprocessor httpflow: full

As Snort applies pre-processors in the
order stipulated in the configuration file,
HTTP Flow must occur after Frag2 and
Stream4 in the configuration file.

Portscan2 and Perfmonitor
The new port scan detector, Portscan2,
uses its own state table to recognize
more scans with less errors. Four direc-
tives are available for configuring the
detector; see Listing 1.

These parameters allow the detector to
recognize port scans that either contact
five different systems within 60 seconds,
or talk to 20 different ports. As the detec-
tor logs the connections, it should be
able to distinguish a SYN/ACK scan from
a genuine connection. The heritage port
scan detector was only capable of detect-
ing scans that opened at least four ports
in less than three seconds.

The Perfmonitor provides current sta-
tistics on Snort’s activities, including
statistics on the network flows, and any
events Snort has detected. Perfmonitor
needs an update parameter for the
events that can either be supplied on a
(time) basis or as a packet count
(pktcnt).

Admins can use Perfmonitor to moni-
tor Snort’s current performance. The
output (Listing 2 provides an excerpt)
also provide far more detail than the sta-
tistical output that Snort typically
provides when terminating.

Rule Optimization
The Rule Optimizer and the High
Performance Multirule Inspection Engine
are responsible for Snort 2.0’s improved
speed. Older versions checked the
parameters defined in the rules in-
dividually and in sequence. The test
stopped when a match had been found
or all rules had been processed. Enter
the new Rule Optimizer. It creates
subgroups of rules, which it sorts

by specific criteria, such as the source
or target port.

Now, when Snort wants to analyze a
packet, it simply works its way through
the appropriate subgroup. Within the
groups there is an additional subdivision
between rules that test the content of a
packet (content, uricontent), and rules
that simply inspect the header.

The Multirule Inspection Engine uses
the Wu-Manber algorithm to perform
extremely quick parallel searches for
specified strings within the packet
content. If the algorithm finds a match,
Snort goes on to check the other
parameters for the rule. In contrast to
earlier versions, the NIDS first checks the
packet content, and then the header. If
the whole rule applies, Snort adds the
event to a queue.

The other rules are applied after the
content rules, and Snort 2.0 follows the
traditional pattern when working its way
through them. After working its way
through all the rules, Snort parses the
queue and selects an event for logging,
where Uricontent has priority over
Content and both have priority over
normal rules. This ensures that the log
will always contain the entry that most
precisely describes the event.

Conclusion
The development work put into opti-
mizing Snort 2.0’s rule-sets really shows.
A growing number of rules inspect
packet content for specific byte or cha-
racter strings. As somewhere in the
region of 70 to 90 percent of all network
traffic is caused by HTTP connections,
the HTTP Flow pre-processor is parti-
cularly effective, drastically reducing the
amount of data and thus the detection
overhead.

The classical rule parsing scheme
provided by older Snort versions soon
reached its limits with rule-sets com-
prising 1,500 entries.

In combination with some less sig-
nificant advancements
in the Snort rule lan-
guage, and the HTTP
Flow preprocessor al-
lows Snort 2.0 to run on
a gigabit speed network
without dropping pack-
ets, despite more com-
plex rule-sets. ■

59www.linux-magazine.com July 2003

SYSADMINSnort 2.0

preprocessor portscan2-ignorehosts: $HOME_NET
preprocessor portscan2-ignoreports-from: 53 80
preprocessor portscan2-ignoreports-to: 53 80
preprocessor portscan2: scanners_max 3200, \
targets_max 5000, target_limit 5, \
port_limit 20, timeout 60, log

Listing 1: Port Scan Detector

Snort Realtime Performance
(Mon Apr 7 14:15:56 2003)

Pkts Recv: 9991
Pkts Drop: 0
% Dropped: 0.00%

KPkts/Sec: 0.02
Bytes/Pkt: 723

Mbits/Sec: 0.11 (wire)
Mbits/Sec: 0.00 (rebuilt)
Mbits/Sec: 0.11 (total)

PatMatch: 87.50%

CPU Usage: 0.11% (user) 0.03% U

(sys) 99.86% (idle)

Alerts/Sec : 0.1
Syns/Sec : 0.1
[...]

Protocol Byte Flows - %Total Flow

TCP: 99.85%
UDP: 0.11%
ICMP: 0.00%
OTHER: 0.04%
[...]

TCP Port Flows

Port[80] 0.42% of Total, Src: U

79.46% Dst: 20.54%
Port[993] 1.13% of Total, Src: U

77.03% Dst: 22.97%
Ports[High<->High]: 98.36%
[...]

Listing 2: Perfmonitor
Output

[1] Snort: http://www.snort.org
[2] Ralf Hildebrand,“Cain and Abel, Snort and

Nmap – two sides of the same coin”, Linux
Magazine, Issue 4, p46 , or online archive
http://www.linux-magazine.com/issue/
04/snort_nmap.pdf

[3] Whitepaper on Snort 2.0: http://www.
snort.org/docs/

[4] Snort 2.0 RPM packages: http://www.
spenneberg.org/IDS

[5] Presentation Advanced IDS and Snort Perl
Patch: http://cerberus.sourcefire.com/
~jeff/presentations/cansecwest-2003/

INFO

