
Commands
There are a large number of options and
parameters available for the Splint com-
mand. The syntax is as follows:

splint flags -f filename program

where flags is a list of options that
enable or disable various checks. In
contrast to most UNIX programs a minus
sign – will disable the option, and a
plus sign + will enable it. Additionally,
there are shortcuts and checking levels
that simultaneously affect a whole
bunch of flags. Splint provides four dis-
tinct levels with increasingly strict
checking criteria: -weak, -standard
(Default), -checks, and -strict (see Box:
Splint Checking Levels).

If the file ~/.splintrc exists and
is readable, Splint will use the default
flags set in the file. The -f filename
flag allows you to specify another file as

default. The following call will check the
Example1.c program in Listing 1:

splint -checks +boundswrite U

-exportheader Example1.c

The parameters tell Splint to use the
checks level without the exportheader
check but enabling boundswrite.

Smart Comments
Splint derives its understanding of the
meaning of individual code sections
from the source code. Thus Splint cannot
know whether a programmer actually
intended to write what Splint regards as
broken code, or if it is simply a program-
ming error. The program developer can
supply additional information in the
form of special annotations that are
passed to Splint.

Listing 1 contains some annotations of
this type. The main function in line 3

Without modifying the pro-
gram code or using special
flags, the static semantics

checker, Splint [1], applies its sleuthing
skills to discovering faulty code. An
article in issue 27, February 2003 [2]
described Splint’s capabilities when
simply thrown in at the deep end.
Programmers can optimize their use of
the program, provided they are not
too busy for a bit more work that
involves adding special annotations to
their code. Splint evaluates the an-
notations to gain a better understanding
of the source code, and this in turn puts
the checker in a position to analyze a
whole new range of problems. These
include:
• Infinite loops
• Memory de-allocation errors (memory

leaks)
• De-referencing null-pointers
• Name convention infringements
• Inappropriate interfaces
• Buffer overflows
• Inaccessible code
The C compiler itself is perfectly capable
of indicating non-complex issues. But
the more complex the pitfall
the programmer falls for, the more
effort tools have to put into disco-
vering programming errors. Figure 1
juxtaposes the effort and return on
effort for these tools: formal verifi-
cation tools will discover more errors,
but they also involve non-trivial effort.
The effort involved in running Splint
is minimal, but the tool still finds a lot
of bugs.

Splint parses C source code and discovers typical programming errors. There

is no need to change the code to allow this, but you can achieve better results

with a bit more effort. Developers can describe their programs in special

annotations allowing Splint a better understanding of what is going on

and helping the tool discover even more dirty code.

BY HERWART KIRAM

Checking Code Quality with Splint

Greater Detail

68 July 2003 www.linux-magazine.com

SplintPROGRAMMING

Weak: Weak check for typical, uncom-
mented programs. At this level Splint does
not discover modifies (side effects that occur
due to hidden value modifications) and does
not investigate macros.Values returned by
functions can be ignored by their caller. bool,
int, char and user-defined enum types are
equivalent.
Standard: In addition to the checks per-
formed at the weak level, Splint additionally
checks whether the program uses released
memory, derferences null-pointers, contains
inaccessible code or infinite loops, and
parses values returned by functions.This

stage also checks whether macros are ok
and if functions use all of their parameters.
bool, int, and char type are not equivalent
and cannot be mixed (without explicit type
conversion).
Checks: This stricter check additionally
ensures that functions exactly adhere to
their interface definition. At this stage enum
and int are also regarded as different types.
Strict: The strictest checking level is of lim-
ited use for real programs.The manpage
promises a reward to the first person to
write a real program that navigates this
stage without provoking any warnings.

Box: Splint Checking Levels

expects a list of arguments that it never
uses. The code annotation /*@unused
@*/ prevents Splint from outputting an
error message. The program developer
knows that the variables will not be
used, but is using them on purpose.
Code annotations always start with /*@
and are terminated by @*/. The follow-
ing command displays a list of
annotations:

splint -help annotations

Invalid pointers are a major hassle
in software development and account
for fifty percent of all errors. Splint can
also help out with bugs of this type. A
small but nasty bug has found its way
into Listing 1 – line 9 de-allocates
memory containing a string, and line
10 attempts to output precisely this
string.

The example we supplied is non-criti-
cal and easily noticed, but in a real
program several hundred lines of code
could be separating the de-allocation and
the illegal access. The memory address
might have been overwritten by arbitrary
data or be outside of the valid address
range. Splint reacts with the following
warning:

Example1.c:10:26: Variable U

dpointer used after being U

released

Destroyed Pointers
Things become more difficult when
memory allocation and de-allocation
occurs in a function instead of the main
program. The program in Listing 2
request memory in the allocmem() rou-

tine. It expects string input from the user
in get_data() and inverts this input in
reverse_data(). It then outputs the string
and de-allocates memory in deal-
locmem(). In the current form the
program produces the following Splint
error message, amongst others:

linttest.c:70:8: Implicitly U

temp storage char_p passed as U

only param: free (char_p)

Splint means that the allocated memory
has not been de-allocated. The error
message disappears when the /*@only
@*/ annotation is inserted directly
before char* in line 11. Now Splint
understands that this is an exclusive ref-
erence; in other words the pointer is
forced to de-allocate the memory it refer-

ences. There are three ways for the
pointer to pass on this obligation to
other pointers:
• Passing it to a function in a parameter.

This uses the only attribute.
• Passing it to an external reference that

also has the only attribute.
• Returning a value that also has the

only attribute.
After passing on this obligation to
another pointer, the original pointer can
be regarded as dead, and should not be
re-used. This allows Splint to ensure that
the program de-allocates any memory it
has allocated, exactly once.

To ensure that this works properly the
obligation to de-allocate memory must
be stipulated. This is caused by routines
that allocate memory, such as malloc()
or calloc().

Annotated Libraries
Splint provides its own versions of stan-
dard library headers. These headers
contain annotated code which Splint will
automatically use when checking a pro-
gram. The malloc() function looks like
this:

/*@only@*/ /*@null@*/ U

void *malloc(size_t size);

The return value is a pointer that refer-
ences a memory area that the caller must
de-allocate (only). The pointer may be
null. A quick look at the headers sup-

69www.linux-magazine.com July 2003

PROGRAMMINGSplint

Figure 1: Most C compilers warn you about simple bugs. More complex error classes require more effort.
Splint allows the programmer to select an appropriate checking level (diagram based on [3])

Formal
verification

 tools

Typical
C compilers

Amount of effort required

Weak checking

Stricter type-checking

Abstract types

Null annotations

Checked macros

Memory management

Function interfaces

Buffer sizes

Fr
ac

tio
n

of
 e

rr
or

s
de

te
ct

ed

#include <stdlib.h>

int main(/*@unused@*/ int argc, /*@unused@*/ char **argv)
{

char* dpointer=NULL;
dpointer = (char*)calloc((size_t)20, (size_t)1);
if (dpointer==NULL) return 1;
strcpy (dpointer, "Hello World");
free (dpointer);
printf("Output: %s\n", dpointer); /* dpointer points to Nirvana */
return 0;

}

Listing 1: Example1.c

Null Pointers
Null pointer access is a common pitfall
in C programming. Unless otherwise
specified, Splint assumes that a pointer
can never be null. To allow this to hap-
pen, programmers need to specify the
/*@null@*/ attribute. Again the mal-
loc() function provides a good example,
as it returns a null pointer if no memory
is available. Splint will issue a warning if
a program de-references the null pointer.
The warning for Listing 2 is as follows:

linttest.c:24:23: Possibly nullU
storage dpointer passed as nonU
-null param: get_data (dpointer)

You can stop Splint from complaining by
re-instating line 23. This will allow Splint
to recognize that the If condition allows
the program to de-reference the null
pointer.

Correct Interfacing
Functions use their interfaces to
exchange information with the calling

environment. Function prototypes spec-
ify the type and number of interfaces.
It is good programming technique to
document the arguments a function
will modify and those it will leave
untouched. The /*@modifies@*/ anno-
tation allows you to tell Splint which
arguments and global variables a routine
can modify. Any discrepancies that occur
may be indicative of a programming
error.

Interface definitions also reproduce
user-defined constants, similar to const
in C++. Splint checks whether argu-
ments not designated as modifiable are
in fact modified at runtime. This check is
enabled by setting +mods flag. But the
fact that a function does not modify a
modifiable argument can also indicate
an error. To check for this case, you will
need to set the +mustmod flag. These
tests are available in checks.

We have assigned the modifies annota-
tion to all of the routines in our sample
program. As get_data() changes the
global variable S_num although the

plied with Splint, standard.h and posix.h
can tell you a lot about annotated code.

The counterpart to malloc() – the
free() function – looks like this:

void free(/*@only@*/ /*@out@*/ U

/*@null@*/ void* ptr);

This function expects a pointer to a mem-
ory area that it will need to de-allocate
(only, the function thus assumes respon-
sibility). The calling function is not
permitted to use this memory again as it
has handed over responsibility for it. The
pointer can be null, so the memory area
may not have been initialized (out).

It is also possible to assign the only
pointer to other pointers. To do so, the
pointer must have the /*@temp@*/
attribute. Temp pointers are not permit-
ted to allocate or de-allocate memory,
and the program cannot access them
after de-allocating a memory area. To
ensure that this will work for non-anno-
tated programs, Splint handles all
pointers as temp by default.

70 July 2003 www.linux-magazine.com

SplintPROGRAMMING

// Sample program 2
#include <stdlib.h>
#include <stdio.h>
#define BUFSIZE 200
// Name convention: all evaluated

types start with
// "T_" and contain only small

letters apart from this
/*@ +matchanyintegral +typeprefix

T_&* @*/
static /*@null@*/ char*

allocmem(void) /*@modifies
nothing@*/ ;

static void deallocmem(char*) ;
static int get_data (char

outputdata) /@modifies
outputdata@*/;

static int reverse_data(char
inputdata) /@modifies
inputdata@*/;

static int S_num;
int main(/*@unused@*/ int argc,

/*@unused@*/char **argv)
{

char* dpointer=NULL;
int char_cnt=0;
int space_cnt=0;

S_num=0;
dpointer = allocmem();

// if (dpointer==NULL) return 0;
char_cnt = get_data (dpointer);
char_cnt = reverse_data
(dpointer);

printf ("Number of characters:
%i Output: %s\n", char_cnt,
dpointer);

deallocmem (dpointer);
if (char_cnt ==0)
{

return 0;
}
else
{

return 0;
}
return 0; // Code inaccessible

}
int reverse_data(char *inputdata)
{

int i =0;
char c;
int a = strlen(inputdata);
while (i<=a/2-1)
{

c=*(inputdata+i);
*(inputdata+i) =
*(inputdata+a-i-1);

*(inputdata+a-i-1)=c;
// i++;

}
return a;

}
int get_data (char *inputdata)
{

int i=0;
printf ("Enter a strings: ");
(void) fgets (inputdata,
BUFSIZE-1, stdin);

S_num = strlen (inputdata);
return i;

}
char* allocmem(void)
{

return
(char*)malloc((size_t)BUFSIZE);
}
void deallocmem(char* char_p)
{

free (char_p);
return;

}

Listing 2: linttest.c

modifies annotation is missing, Splint
issues the following warning:

linttest.c:58:2: Undocumented U

modification of S_num: U

S_num = strlen(outputdata)

Infinite Loops
Splint can test for infinite loops,
although this will only work in
extremely simple cases, such as the
reverse_data() function in our sample
program (see Listing 2). Splint issues the
following warning:

linttest.c:43:9:Suspected U

infinite loop. No value used U

in loop test (i, a) is modifiedU
by test or loop body.

Unfortunately, this warning will dis-
appear if you insert i=3; before the end
of the while loop. The loop is still in-
finite, as the loop variable is a constant,
but Splint no longer recognizes the prob-
lem. i++; would be preferable.

Splint also checks code accessibility.
The return statement at the end
of main() can never be executed as
both branches of the previous if condi-
tion contain return statements. This

causes Splint to report
a bug. To suppress the
warning, you can insert
a code annotation locally,
such as the following
line, to disable the check
before the return state-
ment:

/*@ -unreachable @*/

and then enable the
check again using:

/*@ +unreachable @*/

This variant allows you to
enable certain checks at
critical points, at the
same time avoiding
redundant warnings and

false positives. Line 8 in Listing 2 pro-
vides another example of this. The
matchanyintegral flag prevents Splint
from recognizing the assignment of
size_t to int as an error.

PROGRAMMINGSplint

Category

enumprefix enumerated types enum

globprefix global variables

typeprefix user-defined types typedef

externalprefix external names

localprefix local names

constprefix constants

protoparamprefix parameters in function prototypes

Character Codes

^ any capital letter (A-Z)

& any small letter (a-z)

% any character that is not a capital letter

~ any character that is not a small letter

$ any letter (A-Z, a-z)

any number 0-9

/ any letter or number
(A-Z, a-z, 0-9)

Table 1: Naming conventions

advertisement

• Macro parameters must be surrounded
by brackets.

• Each macro parameter can be used
exactly once only.

Buffer Overflows
Buffer overflows are particularly dan-
gerous in C programs. Many exploits
leverage bugs of this type; memory
access outside the bounds envisaged by
the programmer can thus cause serious
problems. Splint uses internal variables
called maxSet and maxRead to manage
memory blocks, and creates these vari-
ables automatically for each vector.
maxSet specifies the threshold for valid
memory write access, maxRead the
threshold for read access. This is quite
sufficient for simple cases:

int myarray[10];
int i = 8;
myarray[i+4]=0;
myarray[i-12]=0;

If you have enabled the bounds checking
option, Splint will discover that the first
attempt to access the array will probably
write past the end of the array:

Possible out-of-bounds store: U

myarray[i + 4]

Unfortunately, the tool does not recog-
nize negative indexing.

Static checks often do not reveal the
actual index values at runtime. To avoid
this, you can use the /*@ensure@*/ and
/*@require@*/ code annotations to stip-
ulate threshold values for parameters
passed to function interfaces. However,
this requires a great deal of effort,
without actually guaranteeing success.
It only makes sense that buffer over-
flow tests are not part of a specific
checking level, but need to be enabled
explicitly by setting the +boundswrite
and +boundsread flags. The authors of
Splint describe their own technique for
recognizing possible buffer overflows
with a static bounds checker without
actually running the program (see [5]).

Enum and Numbers
In C it is permissible to assign integer
values to variables of arbitrary enumer-
ated (enum) types, instead of just using
the declared values:

enum weekday =
{Mo, Di, Mi, Do Fr, Sa, So};

weekday = 15;

Splint will report an error in this case,
provided you set the -checks flag. The
tool will also recognize use of variables
before they have been defined, and let
you know if the program ignores func-
tion return values.

Conclusion
The comprehensive User Manual for
Splint [3] provides more detail on the
program’s capabilities. Splint is at its
most valuable when integrated at the
outset of a development process, and
used consistently at any point after.
It does not take longer to write anno-
tated programs than to write programs
without annotations. However, using
code annotations does make a developer
think about the meaning of a variable or
parameter, and possibly add a code
annotation. And will improve the quality
of the program code. Splint is a big help
when it comes avoiding errors, and it
saves you a lot of debugging time.

Splint’s biggest downer is the fact that
it does not support C++. However, the
tool is GPL and project leader, David
Evans, has promised to support anyone
prepared to write a C++ front-end. And
that’s what I call a meaningful task that
would benefit the whole developer com-
munity. ■

Naming Conventions
Naming conventions are useful as they
assure the readability of code for a team
of developers working on it. It does not
really matter what conventions you use,
but it is important that each developer
applies them consistently. Splint can also
check for this. Some flags specify the
appearance of various types of variables
or user-defined types. These flags start
with the name of the category (such as
local for local variables) plus the prefix
keyword. The pattern for the name then
follows after a space character. The pat-
tern uses metacharacters to specify the
rules that apply to the name. Unfortu-
nately, you cannot use regular
expressions. For example:

/*@localprefix L_&* @*/

This example specfies that local variable
must start with L_ and can contain only
small letters after this point. (* means
that the previous character can appear
any number of times). Table 1 shows the
categories and metacharacters for these
rules. Line 8 of Listing 2 shows another
example. Any user-defined types must
start with T_, followed by small letters.

Macros
The macro preprocessor is a powerful
tool, but it does harbor a number of pit-
falls. Macros simply replace text and
thus contravene C syntax. A macro that
calculates a square is a classical example
of this:

#define Quadrat(x) x*x

This definition works fine, as long as
only single values are passed to the
macro, as in Quadrat(i). Problems start
to occur if you do things like
Quadrat(i+1). The preprocessor will
convert this text to i+1*i+1, and this
corresponds to i+i+1, rather than
(i+1)*(i+1). A call to Quadrat(i++) is
also problematic, as the result of
i++*i++ will vary from one imple-
mentation to the next. If you launch
Splint with the +allmacros flag, the tool
can check the following, amongst other
things:
• A macro parameter cannot be used

with a decrement or increment opera-
tor.

72 July 2003 www.linux-magazine.com

SplintPROGRAMMING

[1] Splint homepage: http://www.splint.org/
[2] Steven Goodwin and Dean Wilson:“Walk-

ing Upright – Quality Code”. Linux
Magazine, Issue 27, p76

[3] Splint User Manual: http://www.splint.
org/manual/

[4] FAQs: http://www.splint.org/faq.html
[5] Whitepaper on buffer overflows http://

www.cs.virginia.edu/~evans/
usenix01-abstract.html

INFO

Herwart Kiram has
been working as a
software developer in
the telecommunica-
tions industry for over
ten years. He special-
izes in Linux and
communication protocols.TH

E A
UT

HO
R

