
functions have become available in each
new release. This can also prove to be a
pitfall as some functions have been
renamed in each Vim version; thus,
backward compatibility can be an issue.

The Vim helpfile usr_41.txt provides a
list of functions; you can type :help
usr_41 to access the list. The functions in
our sample script are based on Vim 6.1.
If you have an older version of Vim, you
may need to refer to the helpfile before
performing a few modifications.

Quick Access Translations
Scripting languages are best explained
by reference to an example. The short
script we will be looking at
contains all the vital ele-
ments of the Vim language
and actually does some-
thing useful: It parses the
English word highlighted
by the cursor, performs a
lookup in a translation dic-
tionary and displays the
translation for the word.
The user can then choose
to insert the word or store
in an external file.

Conversely, you can enter a word in a
dialog box and display the English equi-
valent. Doing so requires interaction
with the user, access to external files and
commands, search pattern recognition
functionality and conditional execution
of an option selected by the user. Access
to the script is provided by a special
keyboard mapping. Some user dialog
functions work with both the GUI and
console versions – Vim will automati-
cally display the correct variant.

Scripts as Plug-ins
There are several ways to enable your
own script in Vim. You can insert short

The Vim [1] editor is the modern
variant of the heritage editor vi.
With its GUI interface, syntax

highlighting for a wide range of program-
ming languages and multiple undo
facilities, Vim has a lot more to offer
than the original. Many users are aware
that Perl, Python, Ruby, or even Tcl can
be used to call various Vim functions.
However, the editor also had its own
embedded language that provides while
loops, if-else constructs, variables, pre-
defined functions, and a handful of
standard arithmetical operators. Al-
though one would hesitate to call Vim
fully-featured, it does offer enough for
most tasks.

One major advantage that the Vim
scripting language has to offer is the fact
that the complete collection of keyboard
shortcuts and ex-commands (that is,
colon commands) are available for script-
ing, and the GUI version of Vim even
adds menu items. The scripting language
can be used to author tools that enhance
Vim’s syntax highlighting facilities or
change the editor’s approach depending
on the current file type. The language is
developing quite quickly; to date new

Scripting facilities are not only

available for Emacs; Vim, the modern

extension of the venerable vi editor,

includes its own scripting language.

It may not offer quite as many

features as Emacs’ Lisp, but then

again, it does not need as many

brackets either. We will be investi-

gating its potential based on an

editor plug-in for word for word

translations. BY SUSANNE SCHMIDT

A practical explanation of the Vim scripting language

Powerful Solution

48 July 2003 www.linux-magazine.com

Vim ScriptingKNOW HOW

Figure 1: The Vim menu for translations in the basic console version

Unilever

code segments in .vimrc, or create a file
such as myscript.vim in the Vim plug-in
directory. When launched, Vim will
automatically load any scripts residing in
the script path as if they had been added
to .vimrc. The global path for Vim plug-
ins typically points to /usr/ share/vim/
vimVersion/plugin (or /usr/local/share).
Plug-ins will then be available for any
system users.

You should store your own plug-ins in
your home directory below ~/.vim/
plugin. You can use environment
variables or the global Vim configuration
file to change the path while compiling.
The FileType configuration option allows
you to load a new plug-in based on the
file type. Our sample vimrc leverages this
feature for gzipped files or C source
code. A similar technique would allow
you to open an English or French
dictionary by parsing the names file.gb
or file.fr, in fact you could even load a
Chinese language plug-in for a Unicode
file.

From Keyboard to Script
It makes sense to use the map command
to define a keyboard shortcut that
provides instant access to the required
translation function in dict.vim. Vim
will load this mapping automatically
when launched. However, Vim maps
most keys by default, and many users
will have additionally defined their own
mappings.
So, how do you locate an unused key?
The :map command shows the current
keyboard assignments, and :help map-
which-key provides a few additional tips.
:help index provides a list of keyboard
shortcuts for commands.

Vim also provides the mapleader vari-
able to prevent inadvertent re-mapping
of important keys with your own assign-
ments. mapleader is a user-definable
keyboard assignment protection mecha-
nism that prevents existing assignments
from being overwritten. This is indis-
pensable for plug-ins that you intend
publish. :help mapleader provides more
details. Our sample script dict.vim uses
the [F9] and [F8] keys as they are
typically unused.

To assign the word currently high-
lighted by the cursor to a function when
a key is pressed, the functions Eng2Ger()
and Ger2Eng() need to be mapped to a

key. We want the Eng2Ger() function to
use the highlighted word and the
function for the opposite direction to
accept user input (start of Listing 1).

The most important aspect here is the
call to expand with a special parameter.
When [F9] is pressed, the :call command
is performed for the MyDict function and
a special Vim parameter called
<cword>. <cword> designates the

word at the current cursor position.
Vim resolves special variables of this
type, including environment variables,
by calling expand(). The Eng2Ger()
function, which we wrote ourselves,
contains <cword> as a parameter (List-
ing 1, lines 7 through 15). Functions and
loops are not enclosed in brackets but
use the while – endwhile or function –
endfunction directives.

49www.linux-magazine.com July 2003

KNOW HOWVim Scripting

01 map <F9> :call
Eng2Ger(expand("<cword>"))<CR>

02 map <F8> :call Ger2Eng()<CR>
03
04 let dictpath = '~/stuff/

eng2ger.vok'
05 let vocpath = '~/stuff/

vimvoc.txt'
06
07 function Ger2Eng()
08 let word = inputdialog
("Translate de -> eng: ")

09 call Extract(word,
"want_eng")

10 endfunction
11
12 function Eng2Ger(word)
13 let word = a:word
14 call Extract(word,

"want_ger")
15 endfunction
16
17 function Extract(word, lang)
18 let word = a:word
19 let lang = a:lang
20 let wordpair = system

('grep "^' . word . '\b \-\|\-
\b'. word . '$" ' . g:
dictpath)

21 if(v:shell_error)
22 echohl ErrorMsg
23 echo "Error occurred!"
24 echohl None
25 else
26 let match = matchstr

(wordpair, "[^\n]*")
27 call Translate(match,

word, lang)
28 endif
29 endfunction
30
31 function Translate(match,

word, lang)
32 let match = a:match
33 let word = a:word
34 let lang = a:lang
35 if(lang == "want_eng")
36 let result =

substitute(match, "\\
(" . word . "\\) -- ",
submatch(1), "")

37 call ConfirmDialog
(result, match)

38 elseif(lang == "want_ger")
39 let result =

substitute(match,
" -- \\(" . word . "\\)",
submatch(1), "")

40 call ConfirmDialog
(result, match)

41 endif
42 endfunction
43
44 function ConfirmDialog(result,

match)
45 let result = a:result
46 let match = a:match
47 let choice = confirm

(result,"&Insert\n&Save to
File\n&Cancel",3, "Question")

48 if(choice == 1)
49 execute "normal ea " .

result
50 elseif(choice == 2)
51 execute "e " . g:

vocpath
52 execute "normal o" .

match
53 execute "w" . g:

vocpath . "|bd"
54 elseif(choice == 3)
55 execute "normal e"
56 endif
57 endfunction

Listing 1: Vim script dict.vim

As grep can return multiple lines
including newlines, whereas Vim tends
to store the whole return value as a long
string in a variable, matchstr() is used to
extract the relevant response (Listing 1,
line 26). If you use a different dictionary
file, you might need to look into sani-
tizing the return value. In other words,
vocabulary extraction will always
depend on the format of your dictionary
file. This issue may well be resolved
within the next couple of years, by using
an XML format that can handle natural
languages and inflexions, thus recog-
nizing that “fell” comes from “fall” [3],
for example.

Translating
The sanitized word pair and the required
language are then passed to the
Translate() function. Translate calls
substitute() to remove the unwanted part
of the word pair and keep the target
word. The target language is then passed
to the ConfirmDialog() function along
with the word pair. This function
displays the translation and takes care of
saving or inserting the translation.

Vim basically uses a kind of Perl
regex dialect, or at least reflects many of
its capabilities: lookahead and look-
behind, various quantifiers, and lots
more besides.

The syntax for some elements may
be different from what you are used to
with Perl, and calling them via the
substitute() function is also different
from the command-line. The submatch
(number) parameter corresponds to \1 in
the regex in the Vim command-line. The
unwanted portion of the word pair is
simply removed (see Listing 1, lines 31
through 42).

Display, Insert, or Store?
Vim provides functions for user
interaction such as input() or input
dialog(). The Confirm()
function displays a dialog
box with various buttons
in the GUI interface and
uses keyboard shortcuts
if you are not using the
GUI. The second variable
vocpath is used to point
to where a terminology
file needs to be created
when inserting a word

pair (Listing 1, lines 44 through 57).
The Confirm dialog box is easy to use:

let choice = confirmU
(translation, "&Insert\n&Save U

to File\n&Cancel",1, U

"Question").

The first parameter is the text to display
– this is the translation for the word in
dict.vim. The next parameter is a list of
options. The letter following the amper-
sand & is displayed in the console menu
as (C)ancel with a shortcut; the GUI dis-
plays a button labeled Cancel. The third
argument is a default. confirm simply
returns a number that depends on the
number of options in the second parame-
ter. The default value is the number to
select if the user simply pressers [Enter]
– this is option 3, Cancel, in dict.vim.

The last parameter is important for
the GUI: Vim will display the appro-
priate icon for the parameter Generic,
Question, Error, Info or Warning. The
return values 1, 2, and 3 are evaluated in
the If-Elseif-Endif loop (Listing 1, lines
48 through 56).

Simple Insertion
It is extremely easy to insert a word in a
vocabulary file. In Vim, we use the
execute() command in a script to call
commands for normal mode, this is the
mode available when [Esc] is pressed.
We now want Vim to execute e for “End
of Word” and then a for “Append”, and
insert the translated word directly after
the keyword. Finished. Option 3 allows
you to quit the translation menu without
performing any task. The script simply
places the cursor at the end of the word,
but you could just as easily jump to the
end of a line or perform some other task.

The second option is more com-
plicated and adds both the source word
and the translation to a terminology list

The keyword let assigns values to vari-
ables, paths for the script in our case.
The Vim a:word reference provides
access to the variable arguments for a
function. a refers to an argument, s: a
local variable of the called script, g: a
global variable that is referenced within
a local block; b: is local to a buffer, w:
local to a window, and finally, v:
represents a Vim-specific variable. Win-
dow not only refers to GUI windows, but
to Vim console elements.

The Vim input() and inputdialog()
functions allow Vim to accept user input.
The dialog text is passed to the function
as an argument, and the function returns
the user input. The appropriate terms are
stored in a local variable of the function
where the script can access them. The
Extract() function (see Listing 1, lines 17
through 29) then locates the required
term in the external file (dictpath) and
returns a pair of terms from the file. The
term pair is then passed to the
Translate() function (see Listing 1, lines
31 through 42) along with the target
language indicator.

Performing Lookups
There are several ways to look up the
word at the current cursor position in a
dictionary file: the system() function
allows you to call arbitrary system com-
mands, such as grep. An extremely basic
English dictionary file is already avail-
able for lookups (Listing 1, line 20).
Alternatively, you might like to use a sys-
tem call to access a dictionary, such as
dict.leo.org or a dictd server (dictd is a
daemon that provides various dictionary
files on the network). The advantage of
the grep version is that it does not neces-
sitate network access.

Just like Perl, the grep call needs to
use . to create a string and resolve the
variable. The system call will pass grep
TheWord ~/stuff/eng2ger.vok to the
shell. The return value for grep, that is
any lines that match the regular expres-
sion, ends up in the wordpair variable.
The terminology file provides term pairs
in Wort – word format. If grep does not
find a match, the script parses the Vim
variable v:shell_error. It adds the stan-
dard highlighting for ErrorMsg to the
error message and removes the high-
lighting again after outputting the error
(see Listing 1, lines 20 through 25).

50 July 2003 www.linux-magazine.com

Vim ScriptingKNOW HOW

Figure 2: If something goes wrong, an error message is displayed in
the current color scheme

that might come in useful if you need to
revise some vocabulary. The dialog box
(see Listing 1, line 53) also takes care of
saving and inserting the translation.
execute in combination with normal only
simulate the user typing to or navigating
a file. This allows for arbitrary sequences
of Vim commands – just like in the
modes enabled by pressing [Esc] or :.

Revising Vocabulary
A call to :e file opens a new file to export
a pair of terms to it. execute simulates
the : command in the Vim script. In con-
trast to the normal command, you do not
need a keyword like colon or something
similar. Instead just pass the execute
command directly. The new file will be
the current buffer for a short time. The
[O] command inserts the new pair of
terms in front of any existing content.

To change the order – that is insert the
current terms at the end of the file –
simply use [Shift]+ [O]. In order to be
able to apply the same procedures to the
vocabulary file as to the dictionary file at
a later date, dict.vim uses the same
syntax to write the word pair. After
completing this step, you can press [W]
to store the current buffer, that is the
vocabulary file, and after saving, call |bd
(buffer delete) to flush the buffer. The
pipe character | in Vim’s : mode means:
only move on to the next command, if
the previous command completed ok
(Listing 1, line 53).

Additionally, unknown terms can
be formatted and stored in an external
file to create vocabulary cards at a later
date.

Plugins & Icons
For those heavily addicted to mouse and
nifty little icons, a vim-plugin could be

added to the icon-bar of gvim. Create a
little icon with the exact size of 20x20
pixels, save it as mybutton.bmp (a
bitmap file).

Create in your ~/.vim directory a sub-
directory named “bitmaps”. Copy the
new bitmap into this directoy. Now a
plugin or a vim command could be
“mapped” to this new icon. For experi-
mental use, try this:

menu ToolBar.mybutton :call EngU
2Ger(expand("<cword>"))<CR>

This command works as follows: The
command :menu adds a new icon in the
icon bar, according to the parameter
ToolBar.mybutton. Mybutton.bmp has to
be found in the bitmaps-directory of vim,
if not, an empty icon is shown. With the
menu-commands, mapping a function
call is quite easy. In addition to mapping
the translate function to a key, it’s
mapped to an icon. The new mybutton
entry in the icon bar raises immediately
after activating the :menu command.

Clicking the new icon OR pressing
F9 acts in the same way: The translation
function Eng2Ger which translates
the word under the cursor, is called. For
the vice-versa direction work with the
same command, but map a different
icon to the plugin-function Ger2Eng.
Of course, the menu mapping command
call could be added into the .vimrc
or better to the .gvimrc in the home
directory.

More Featurezzzz!
If you require more than just simple
translation, you can modify the script
correspondingly – more options are
available if you use the Vim interface
for Perl, Python, Ruby, or Tcl, such

as looking up Unicode encoded terms,
and thus compiling far more exotic
dictionaries. Many publishing compa-
nies offer digital versions of their
dictionaries; if you figure out the format
you could even design an interface
to the “Micro Robert” (French dic-
tionary).

Ispell allows for flexible search
patterns, as it understands the kind
of inflected forms that occur in German
or French. Thus, a plug-in would
recognize “lis”, “lu” or “lirai” as dif-
ferent forms of the French verb “lire”
(to read). Building on Ispell’s capability
to recognize the stem and ending of
a word, programmers are only a
few steps away from elegant syntax
highlighting for typos, grammatical
or even stylistic issues.

This would allow Vim to check a
ruleset for magazine articles and indicate
any misdemeanors. Shortly after those
Star Trek style pads hit the stores, you
can just point at a word to boldly display
the translation. ■

51www.linux-magazine.com July 2003

KNOW HOWVim Scripting

[1] Vim homepage: http://vim.sf.net
[2] English/German dictionary file: http://ftp.

leo.org/download/pub/comp/doc/dict/
[3] Natural Language Processing with XML:

www.w3c.org/TR/2000/
WD-nl-spec-20001120/

INFO

Susanne Schmidt is a political scien-
tist, and has been using Linux since
1994. Open Source has helped her
pay the rent so far thanks to various
publications and freelancing for vari-
ous Linux enterprises in Berlin,
Germany.

TH
E A

UT
HO

R

Figure 3: Now choose what you want to do Figure 4: In the GUI version a window appears, accepting input for translation

