
ponent Library for Cross-Platform) pro-
jects and how CLX projects can be
compiled on other platforms. For the first
section – porting a thread sample – we
will first need to load a small Delphi VCL
project in Kylix for Delphi.

In section two we will be looking
briefly at porting a Delphi CLX project to
Kylix, and using Kylix to compile a sim-
ple Delphi CLX program. And finally, we
will be using C++Builder to write a VCL
program, converting it into a CLX pro-
gram and including it in the Delphi CLX
port.

Choice of Developer
Platforms
It is preferable to use Linux CLX for pro-
ject development, and then convert to
Windows, rather than the other way
round. Kylix is not only cheaper than
Delphi or C++Builder – and to be accu-
rate, any comparison should in fact be
based on the total price of both Delphi

and C++Builder – there is less danger of
producing platform specific code, using
Kylix.

The current Delphi and C++Builder
versions contain a license for their Kylix
counterparts: Delphi for the Kylix Delphi
IDE and C++Builder for the C++Builder
IDE. In fact, the Kylix product and the
free Kylix Open Edition for use in Open
Source projects include both IDEs.

There is a tool for importing
C++Builder project files to Kylix, but
there does not seem to be a tool for
converting VCL source files to CLX.
Depending on the project, conversion
may involve as little effort as adding a
few Q s to unit names, or as much as
completely exchanging the database and
the intra/inter-process communication
(CLX supports neither the Borland
Database Engine BDE nor proprietary
Windows message formats).

Manual conversion is described, for
example, by Dr. Bob (see [1]) and of

Many major Open Source pro-
jects such as Apache, Open
Office, or Mozilla are not

restricted to a single platform or proces-
sor type. Developers recognize the
importance of providing multi OS capa-
bilities for their programs. And porting
commercial programs can open up new
markets. One approach to this is a com-
bination of Delphi/Kylix.

Kylix 3 finally allows developers to
port Delphi 6/7 and C++Builder 6 pro-
jects (using Borland’s C++ IDE) from
Windows to Linux. And what’s more,
you can develop new projects in a man-
ner that supports quick porting. To the
best of our knowledge the longest period
required to talk a clean Delphi CLX pro-
ject into compiling on Linux was two
hours, as reported in the Colliers Case
Study [2].

This workshop describes how existing
Delphi/VCL (Visual Component Library)
projects can be converted to CLX (Com-

For C++ projects the Component

Library for Cross-Platform (CLX) is the

bridge that connects the

Windows/Delphi and Linux/Kylix

worlds. This article looks at a practical

case: porting a Delphi and C++Builder

program to Linux, a Delphi program

to Kylix for C++ and a Delphi VCL pro-

gram to CLX. All in a simple and

timely fashion.

BY JOCHEN STÄRK

Workshop: Platform Port for C++ from Borland Delphi to Kylix 3

An Unlikely Couple

62 August 2003 www.linux-magazine.com

Kylix WorkshopPROGRAMMING



course the manuals (“Delphi 7”, chapter
15.2, “C++Builder 6”, Vol. 1, chapter
14.2). Converting the source code will
not create a “native Linux version” but,
under perfect circumstances, a CLX ver-
sion with non-platform specific source
code.

Although the change may appear
insignificant at first, note that Windows
relies on dfm files being renamed to xfm
to decide the kind of code the IDE will
generate from the form definitions con-
tained in the files: CLX code for xfm and
VCL code for dfm files. When porting,
renaming the files will always be the first
step, which is followed by changing {$R
*.dfm} to {$R *.xfm} in the appropriate
source file.

Name Game
If you forget to rename these
files, and then go on to per-
form valid modifications of the
source files, stipulating QForms
instead of Forms for example,
Delphi and C++Builder will
add the “missing” forms unit
or header file to the source
code next time you save the
project.

The reason for this is that
both assume a VCL project
with a form, based on the dfm
file suffix, and this necessitates
using the Forms unit. However,

if you remembered to rename the file,
both Delphi and C++Builder on Win-
dows will use some of the required CLX
units when you load the file. Kylix
always uses CLX units.

Porting the Thread Sample
Program
At this year’s CeBIT I was regularly
asked whether vBuilder multithreading
code is portable, or necessitates writing
special forks or similar for each applica-
tion on Linux. The answer is, developers
can use the glibc function on Kylix, more
specifically, they can use fork. Of course,
this kind of thing should be placed in an
#ifdef block for this platform only. How-
ever, Kylix CLX thread classes can also

be used in Delphi and Kylix for C++.
Here is some proof-of-concept code

that simultaneously converts from VCL
to CLX: Copy Delphi7\Demos\Threads
to your Linux partition and rename
thsort.dfm to thsort.xfm. Open ThSort.pas
in an editor and change {$R *.dfm} to
{$R *.xfm}. Additionally, rename
thrddemo.res to ThrdDemo.RES. You can
now open the file in Kylix for Delphi. The
borderstyle message that appears is
caused by a missing CLX forms property
and can be ignored.

When you attempt to launch the pro-
gram, the first thing you will notice is the
missing Forms unit in thrddemo. Now
change this to QForms. CLX uses the
same properties, methods, and class
names, however, they may be stored in
different units.

Open the ThSort tab and delete the
non-portable Windows and Messages
units. QControls, QStdCtrls and QExtCtrls
have been added Controls, StdCtrls and
ExtCtrls, and the versions without a Q
are no longer needed. Replace Graphics
with QGraphics, Forms with QForms and
Dialogs withQDialogs. Because the form
definition file is missing, these changes
could not be performed automatically in
SortThds, thus you will need to manually
add a Q to Graphics and ExtCtrls.

This should leave you with a fully
functional CLX version of the former
VCL application. If you want to have the
same kind of fun with Kylix for
C++Builder, you can try out the example
in the Examples/Apps/Threads directory.
You might like to run the Project Conver-
sion Utility for the project file first (see
the “Project Conversion Utility” insert).

Additional Steps
{$R *.dfm} is now called
#pragma resource “*.dfm” of
course, and needs to be
renamed to *.xfm. Addition-
ally, many vcl.h include files
will need to be remapped to
clx.h. Synchronize(DoVisual-
Swap); in sortthd.cpp be-
comes Synchronize(&DoVisu-
alSwap);, as CLX and VCL use
different call syntax. It is a
good idea to replace ran-
dom(170); in thsort.cpp with
random()%170;, as the Linux
random function manually

63www.linux-magazine.com August 2003

PROGRAMMINGKylix  Workshop

Figure 2: A former VCL thread application as a CLX application on Linux. It
classifies different algorithms by reference to the degree of sorting in the
field. All threads and/or algorithms were launched simultaneously with
the same line length

Figure 1: Kylix for Delphi and Kylix for C++ look nearly the same – The Delphi version on the left, the C++
version on the right. This enables developers to work on differing platforms without the expense of
retraining



ible=!Image1->Visible;. Save this in the
Linux share and close the project. Now
rename Unit1.dfm to Unit1.xfm in the
Linux share. Open Unit1.cpp in an editor
and change the #pragma resource *.dfm
line in Unit1 .cpp to #pragma resource
*.xfm. Additionally change #include
<vcl.h> to #include <clx.h> and save
these changes.

Then launch the Project Conversion
Utility in Kylix for C++ (see insert).
Opening the exported file in Kylix 
will cause Kylix to add the required 
CLX units to Unit1.h the next time you
save the file. You can now delete
#include <Controls.hpp>, #include
<StdCtrls.hpp> and #include <Ext
Ctrls.hpp> from Unit1.h, as the include
files automatically added (QControls,
QStdCtrls et cetera) have been replaced
by the CLX versions of the VCL headers.
Finally, change #include <Forms.hpp>
to #include <QForms.hpp>.

If you launch a project that has been
modified in this way on Windows, it will

terminate immediately, and Kylix will
issue a message saying that it cannot
find the vcl.h header file (in Project1.cpp
this time). You can then modify this file

restricts random functions to a valid
range. An appropriate #ifdef ensures the
compatibility of the Windows version.

The problem with the C++ port is that
the Kylix developers seemingly had good
reason to use dynamic arrays rather than
static ones in Kylix3Pfad/examples/c/
threads/. Although the version with sta-
tic arrays will run, you get a
EAccessViolation message if you click (or
if you click twice, at least) on Start Sort-
ing shortly after sorting has completed.
The back port to Windows does not
exhibit this behavior.

Porting a Delphi CLX Project
to Kylix
Copy a Delphi CLX project, for example
the CLX Explorer Delphi7-Path\Demos\
Clx\ClxExplorer, to your Linux en-
vironment, launch Kylix for Delphi
(startdephi ), and open the project.
Clicking on Start should compile and
launch the application on Linux (Figure
3). All done!

A C++Builder/VCL Project
in Kylix
To make things slightly more complex,
the following scenarios assumes that
your current project is a C++Builder
VCL project, rather than a Delphi CLX
project. The following approach is
required in this case: launch C++Builder
and add button and a Timage control 
to a VCL application (File | New |
Application ).

Change the name property of the form
to ImageForm, to avoid collisions with
Form1 later, and set the Stretch property
for TImage to true, to scale images to fit
the image size. 

The button will be used to modify the
visibility of the image. To do so, double
click on the button and add the required
code to the event handler: Image1->Vis-

64 August 2003 www.linux-magazine.com

Kylix WorkshopPROGRAMMING

// Check if a non-directory entry
// has been selected
if ((FileListView1->SelCount>0)&&((FileListView1->U
Selections[0]->SR.Attr&faDirectory)==0))

// If so, load file
ImageForm->Image1->Picture->LoadFromFile(U
AnsiString(DirectoryTreeView1->Directory)+PathDelim+U
AnsiString(FileListView1->Selections[0]->SR.Name));

Listing 1: onSelectItem property

Figure 3: Windows on the left, Linux on the right, simply by loading and compiling with Kylix

Kylix is not the only code development tool
with multi-platform capabilities. Let’s look
at just two examples.
Omnis Studio 3 by Raining Data is an inte-
grated, object oriented RAD environment for
Mac,Windows, Solaris, and Linux. Programs
are portable – assuming you avoid platform
specific externals or system calls. Omnis Stu-
dio is mainly suited to developing frontends
with matching backends, which in turn
access MySQL, Oracle, DB2, and so on,
natively or using ODBC.The Standard Edi-
tion costs somewhere in the region of 290
Euro. http://www.omnis.net/products/studio
IDE Revolution by Runtime Revolution has a
similar approach.Text processing, multime-
dia, graphics and Internet applications, CGI
and shell scripts, and database frontends
developed using IDE Revolution will run on
Linux/Unix,Windows, Mac OS and Mac OS
X.The protocol language can handle asso-
ciative arrays, regular expressions, HTTP, FTP,
Sockets, ODBC and native MySQL, and pro-
vides for access to modules written in other
languages.
Version 1.1.1 is current, the more functional
version 2.0 is beta at present, although this
phase should have been completed by end
of year 2002.The Small Business Edition
costs about $ 300 US, a Starter Kit is pro-
vided free of charge. http://www.runrev.com

Other multi-platform tools



(Project | Display Source code ) making it
CLX conforming (#include <clx.h>
instead of #include <vcl.h> ) to pro-
duce a fully functional CLX project.

To emphasize Kylix for Delphi’s C++
capabilities, you might like to add the
Delphi or Kylix for Delphi CLX Explorer
to your Kylix for C++ project. After all,
C++Builder has been able to speak
Delphi for years.

Polygamy
First select the MainFrm.pas file for 
the CLX Explorer in Project | Add to
Project. Then select Project | Update
project name a header file for the Delphi
unit. The header is generated when you
update the project; thus, it makes 
no sense to include the header file with-
out compiling it at least once with the
Pascal file.

You can then click on File | New | Oth-
ers | project name | Form1 to inherit the
new header file. You might like to specify

a name, such as inheritedForm, for the
inherited form. Then add another button
(with a Browse caption, for example) to
your ImageForm and apply the inherited
Unit2.h (by clicking on File | Include
Unitor [Alt]+[F11]).

Specify inheritedForm->Show(); as
the event handler for Button2, paying
attention to avoid using the original Pas-
cal form! Of course it will work, and it
looks similar in most parts, but any mod-
ifications in the inherited class will be
ignored by definition.

Your Delphi CLX application is now
ready for use in the Kylix for C++
application. Simply include the unit for
your ImageForm (typically Unit1.h) in
the file with inheritedForm (for example,
Unit2 .cpp) and set the onSelectItem
property of FileListView1 in inherited-
Form to the construction shown in
Listing 1.

Conclusion: Simple through
Complex
CLX portability of this first version with
C++ shows some teething troubles,
starting with the capitalization of Bor-
land’s own unit names, which differs
between Windows and Linux (for exam-
ple, SoapHTTPClient), through the
dumping of the portable SQL Client
dataset in Delphi 7 in favor of the simple
dataset, and culminating in the need to
convert C++ project files.

But Kylix 3 not only means that exist-
ing Delphi and C++ projects are portable
to Linux, but that for the first time this
really does mean the complete Delphi
and C++ developer environment.

Both environments provide Rapid
Application Development (RAD) facili-
ties, allowing the developer to simply
point and click to generate code for the
user interface.

This solution is available for Linux,
and is thus one of the first, if not the
first, C++ RAD for Linux.

Practical porting still leaves a lot of
scope – in the best of all cases, a CLX
can be converted with minimal effort,
within a few minutes or hours. The other
extreme is a time-consuming Herculean
tasks and assumes a high level of skill
just to convert a single VCL application
that makes lavish use of the BDE data-
base connector, Windows messages, and
direct Win32 API calls.

Programmers wanting to avoid this
effort, are advised to concentrate on
developing CLX applications – and to
choose the right platform for the task,
Linux. But even a Windows CLX devel-
opment can be ported without any
compromise, provided the developer
avoids Windows specific features. 

What ever approach you adopt, if you
want to be able to recognize the kind of
issues that can occur in large-scale pro-
jects, regular porting (at least once a
week) of a CLX project to the target plat-
form, is recommended. ■

65www.linux-magazine.com August 2003

PROGRAMMINGKylix  Workshop

[1] Migration from Delphi 5 VCL to Kylix CLX:
http://bdn.borland.com/article/images/
27534/migrating_delphi5.pdf

[2] A case study on the Cross Platform Pro-
ject: http://www.borland.com/products/
case_studies/kylix_colliers.html

[3] Kylix Downloads (Trial, Open Edition,
Patches and Project Conversion Utility):
http://www.borland.com/products/
downloads/download_kylix.html

[4] BDE to dbExpress conversion:
http://www.borland.com/products/
white_papers/pdf/migrating_borland_
database_engine_applications_to_dbex-
press.pdf

INFO

Jochen Stärk works
for Borland GmbH in
Germany, in technical
systems support
where his major focus
is C++ Builder and
Kylix.TH

E A
UT

HO
R

Figure 4: The Kylix for C++ project shows an image viewer and the file browser – there is nothing left to
remind the user of the program’s Delphi roots

This utility is available from the eToys sec-
tion of [3]. It installs below Tools | Project
Conversion Utility in the Kylix C++ IDE or
C++Builder.The project conversion utility
only converts the C++ Builder and/or Kylix
for C++ project files without modifying
sources, that is, it does not convert from VCL
to CLX.The Windows version can convert
Kylix for C++ project files to C++Builder 6
project files, and Linux version C++Builder 6
project files to Kylix für C++ project files.This
is required at present on account of varying
switches in these compilers.

Project Conversion Utility


