
There are many reasons why you
might want to gather up the text
from a printed page and have it

stored in some character form. Busi-
nesses might get deluged with paper
correspondence that they are obliged to
keep, maybe even to 10 years for some
documentation like invoices and receipt
notes. The shear volume of such paper
opens up the need for electronic docu-
ment management.

It does not have to be limited to a large
business. A SOHO user might generate
the same amount of correspondence pro
rata, but run out of room under the bed
in which to store it. Document archiving
would be of benefit here too. Though
there is a different order of scale and
throughput required.

Saving space isn’t the only issue, you
need to consider the management of the
data too. You, as a SOHO user might
want to archive lot of paper correspon-
dence, some of the older stuff originally
typewritten. If you have a scanner you
could save each page as an image file.
Such a typewritten page might taken
400KBytes to be stored, you might even
build a database up giving brief details
about each document so that you have
some way of finding these documents
again once you get past your 3rd CDs
worth.

You could soon be starting to archive
quite a lot of data, a lot of it would be
worthless. A typed sheet scanned might
come in at around 400KBytes for the
image, which is a lot of data for the small
amount of information that is actually
held in the letter, about 4,000 characters
maximum for an A4 piece of paper, prob-

ably half that once you add margins and
formatting, so, 2KBytes of information is
being held on a page.

Even if size were no limitation to you,
you would still be missing a trick if it
was saved in a graphical format. If you
had access to the text itself on the pages
you would be able to search through all
the documents just like you could cat a
readme file. You could take it further,
build a database using the information
contained in the correspondence.

What you need to do it
Somehow you need to get your text into
a graphical format, it is from this stage
that the OCR software can start working.
How you do this depends very much on
the form of your data. Most of the time
your original input is going to be paper
bound, so you will need some kind of
optical scanner.

Alternatively, you may find your data
is on your computer already with the
text locked away, say, in the form of a
.pdf file. Here you could print the PDF
out an then scan it, better still, why not
just grab the image with something like
xgrab, which will allow you to capture
your screen, or selected parts of it, sav-
ing it as a graphics file, like .ppm. This
will work just in the same way, after all,
your optical scanner is just going to
make a similar type of file so there is lit-
tle difference.

You will need some Optical Character
Recognition. OCR software really is the
clever bit of this process. It is pattern
recognition software, but with a tightly
defined set of patterns that it will recog-
nize. This pattern is usually limited to

the shape of the fonts. Most Linux distri-
butions come with a package called
GOCR. If you find you do not have this
package, you can download a copy from
[1]. Luckily enough GOCR is not that
limited with the range of fonts that it will
recognize as you can see in Figure 1. It is
not an unlimited set though and it is
unlikely to cope with any fancy fonts.

Much depends on the quality of the
image that you are working with. If you
are dealing with old paper that might
have yellowed or has coffee mug rings
on it you will find that parts of the image
might not be recognized very success-
fully. A lot has to do with resolution as
well, scanning your image down to the
size of a postage stamp is going to be
just as unreadable for the computer as it
will be for an human.

Alternatively, scanning at maximum
resolution is just going to waste time and
create huge files that will take even more
time to process. There are no hard and
fast guidelines, but scanning somewhere
around 300 – 600 dpi should see you
right. Should your OCR passes be con-
stantly failing then adjusting the
resolution would be a good first step on
the way to a solution.

Command line OCR
You can use GOCR in a variety of ways.
From the command line you will get
access to batch processing of image files,
very convenient because the OCR
process is likely to be the most time con-
suming operation. Passing parameters to
GOCR on the command line is less than
intuitive, so we can be thankful for the
existence of the GOCR.tcl program, see

The ability to lift printed text off the page and turn it into editable text is a

wonderful skill, a skill that no longer remains in the sole domain of the typing

pool, any two fingered typist can do it these days. Nor does it necessarily have

to remain a process confined to big businesses with endless finances

BY COLIN MURPHY

Unleash the benefit of Optical Character Recognition

Reading Rights

44 August 2003 www.linux-magazine.com

OCRKNOW HOW

Figure 2, that will allow us to configure
and run the OCR process from a GUI. It
is unlikely that you will find GOCR on
any of your desktop menus, so you will
need to call it up from the the command
line. There are other options, more of
which later.

In Figure 2 you can see the GOCR.tcl
front-end program along with a copy of
Adobe Acrobat and xgrab. I used xgrab
to ‘screen capture’ the XaoS story that
you can see in the .pdf image. The sub-
sequent image file /home/colin/txt3.ppm
was fed into the GOCR interface and the
‘Run It’ button was hit. About 10 sec-
onds later up came the recognized text,
which you can see in the main body of
the GOCR front-end.

You should note the top four lines of
text, these are left over from a previous
attempt where the settings were not
quite good enough, I had to adjust the
‘greylevel’ setting a little bit more to get
an acceptable result. Also note how I
had to enlarge the .pdf display, by 600%,
to get a resolution that would work.
Modern optical scanners have a higher
resolution than that of a monitor, which
was running at 1024x800.

To help you figure out how to drive
GOCR from the command line, if you
look down the bottom you will see the
output that the front-end program passes
to the OCR program. You would pass a
similar command from a terminal. To get
a full list of these commands you will
need to look at man gocr.

OCR directly from a scanner
This might all seem a little complex at
first, what you all really want is just
point and click OCR, going through the
GOCR.tcl front-end does make you
aware of the technicalities though.
Thankfully there are easier ways. Kooka
is a scanning package which comes with

the KDE desktop. You do not need to be
using KDE just to run Kooka, you just
need the right code available, like having
the Qt and the base KDE libraries
installed.

Kooka is a front-end for the Sane scan-
ner libraries, but as an extra facility, it
allows you to carry out OCR functions
from the one application. By default, this
OCR process also uses GOCR.

Kooka offers you the chance to OCR
the entire page or once you have taken a
preview scan, limit yourself to a region.
Any text picked up can be dropped into a
text editor for further scrutiny and / or
spell checking.

Proprietary alternatives
GOCR is not a new program, officially it
is still in beta and has not seen an
update for nearly a year. That is the way
with some Open Source projects, they
reach a certain level of maturity, they
work as well as anyone reasonably
expects and they go hardly any further.

If you are grabbed by the OCR bug in a
big way, where you will want to invest
real money into your document archiv-
ing plans, then there are a few
proprietary solutions that you could try.

OCR Shop from Vividata [2] is one
solution which, for a cost of nearly
$1.500 for a minimum configuration,
will give you a new range of features that
GORC just can’t touch. It is based on the

ScanSoft OCR engine which has been
used to great success on Windows and
Mac systems. It will scan documents
much faster, maybe page a second and
cope with a much larger range of fonts in
sizes from 5 – 72 dpi.

Remember, if you are looking to
process hundreds of documents a day
then these are the facilities you need,
probably alongside an optical scanner
with a sheet feeder, which will be
another expense in the $1,000’s.

KaDMOS [3] is another alternative,
with a professional price tag to suit, if
used in Windows platforms anyway.
Should you be lucky enough to be a
SuSE user, with an 8.2 box set, then you
will find this in your installation already.
This is fully integrated into the Kooka
application and provides a very compre-
hensive character recognition solution.

Not only does this have the facility to
recognize a huge range of fonts, it will
also cope with handwritten scripts. The
validity of any text output by the KaD-
MOS OCR is also much better scrutinized
automatically. ■

45www.linux-magazine.com August 2003

KNOW HOWOCR

Figure 1: A selection of the range of fonts that
GOCR will make an attempt to recognize

Figure 2: Using the GOCR front-end you can scan from a .pdf file just as easily as from a sheet of paper

[1] GOCR: http://www-e.uni-magdeburg.de/
jschulen/ocr/

[2] Vividata: http://www.vividata.com/
ocrshop.html

[3] KaDMOS: http://www.rerecognition.com/

INFO

