
is instead kept in a database on the per-
force server, which, together with a
much more efficient client-server proto-
col, makes a p4 sync incomparably faster
than cvs update.

The branching system is different, too.
In CVS, branches are a part of the file,
while in perforce they are part of the
directory. That’s a big simplification, but
it’s a good one.

Perforce’s access control system is also
simple and effective. Most of the simple
things work correctly as you would
expect, for example there are atomic
checkins, and p4 sync will never corrupt
the file you’re working on.

Hands on a solution
In this article, I’ll describe the overall
philosophy and feel of perforce, show a
bit of syntax and generally blather on. If
you want to play along while reading,
there are versions for lots of OSes avail-
able at ftp.perforce.com. Just download

p4 and p4d and make a scratch installa-
tion in /tmp:

mkdir /tmp/p4-examples
p4d -r /tmp/p4-examples &

This temporary p4d installation is lim-
ited to two users and two clients (more
about this later). Once done, explain to
the client that it should use the newly
created server:

mkdir projectx
echo P4PORT=`/bin/hostname`:U
1666 > projectx/.p4config
export P4CONFIG=.p4config

Whenever you use the p4 client-pro-
gram, it will read the environment
variable P4CONFIG and look for the file
specified in it. It will search the current
directory for .p4config, then its parent,
and so on, and finally use the p4d server
specified by the P4PORT variable.

When using CVS, I was un-
happy with its bad support
for branches, its rotten perfor-

mance over the network, its undocu-
mented and weird behaviour when I
needed to do strange things like running
it in a chroot jail or store JPEG files in it.

A programmer’s complaints
It was really hard to incrementally copy
all the bugfixes from a bugfix branch
into the main development branch, but
avoid copying the workarounds. The
time for a cvs update was roughly pro-
portional to the number of files in total,
even if only one file changed, and it
would scatter conflict markers all over
the source without warning. I like con-
flict markers, but I even more like being
able to update the rest of the code with-
out having to deal with conflicts right
away.

And, oh yes, I hated those CVS directo-
ries cluttering up everything. My
girlfriend would be surprised to hear it,
but I’m actually a very orderly sort of
person and those CVS directories always
irritated me.

Perforce is what I found. As an overall
system, it’s bit like CVS except totally
different. It has the same sort of feel,
except that it’s p4 submit instead of cvs
commit. It has similar emacs integration,
except that it’s called p4.el instead of
vc.el. But at the same time, different.

The server knows much, much more.
All the data that CVS keeps in CVS/* files

Some of you may have used CVS more than you really want to, as I have, have run into its limits, as I have, and be looking

for something better, as I was. In this article I’m going to describe why I was looking and what I found.

BY ARNT GULBRANDSEN

Version control using Perforce

Fast and powerful

48 August 2003 www.linux-magazine.com

Arnt Gulbrandsen has been using
linux since early 1992. For many
years, he worked at Trolltech, doing
documentation, programming, sys-
tem administration and kitchen
service. He’s currently having fun at a
new startup.TH

E A
UT

HO
R

PerforceKNOW HOW

A big and fairly complex project usu-
ally has people working on several
versions of the code. When branches are
used, there can be a main development
branch (or more), a QA branch, a branch
per release, often a vendor branch
(where pristine copies of all third-party
code are kept), etc.

Let’s say this is a large GUI application
using Qt and Coin, then the buildmaster,
the person who’s responsible for the
overall management of the code, has
both the development code, the QA/
release code and the vendor code on
hand:

$ ls ~/work/projectx
devel rel1.0 vendor
$ ls ~/work/projectx/vendor
coin qt
$ ls ~/work/projectx/devel
coin src qt

Inside vendor, there are separate directo-
ries for Qt and Coin, and in devel, there
are all the files the developers work on –
including Qt and Coin. Two versions of
Qt, two versions of Coin. Why?

vendor/coin contains the vendor ver-
sion of Coin, devel/coin the locally
patched and used version. Hopefully the
two are 100 percent equal (and if they
are perforce will optimize away the
unnecessary storage) but in principle
they can be different: maybe devel/coin
contains an older version than
vendor/coin, or it may have some local
hacks.

In perforce, devel/coin is a branch of
vendor/coin. Changes are submitted on
one branch and (optionally) integrated
into the other.

When a new version of Coin is
released, the buildmaster will untar it in
vendor/coin, check it into perforce, and
then p4 integrate it into devel/coin. The
other programmers always use the ver-
sion in devel/coin.

p4 integrate means that perforce
should integrate new work from ven-
dor/coin to devel/coin. All the vendor’s
new changes (the ones on vendor/coin)
are merged into the site’s own version
(the ones on devel/coin), and the result
is put in devel/coin.

The tricky bit is that only changes
since the previous integration are consid-
ered. Luckily Perforce does most of the

difficult and boring work automatically
using p4 resolve -am (automatic merge).
The buildmaster may need to deal with
some conflicts, for example by editing
files filled with CVS-like conflict mark-
ers. There are also other ways of doing it,
such as using a user-defined merge tool
for game-level files.

After the integrate, the buildmaster
compiles and tests, and finally runs p4
submit devel/coin/... to submit the inte-
gration. The next time the other pro-
grammers run p4 sync, they’re upgraded
to the new Coin version.

Since the buildmaster needs so many
files on hand, a client view that looks at
most of the depot is necessary. The
important bits are shown in Listing 1.

You can edit the current client specifi-
cation using the editor defined in
EDITOR and p4 client, or see it with p4
client -o. The variables P4CLIENT and/or
P4USER specified in .p4config or in the
environment define the perforce client
and username. On Unix systems, the
default values resemble the hostname
and the Unix username, respectively,
which is fine as long as all files to be
controlled by perforce reside below one
single directory tree.

This root-directory is defined in the
Root: line of the client specification. All
perforce-controlled files reside under this
root. The View: decides which part of the
depot the client can see: In Listing 1,
three different parts of the depot are

49www.linux-magazine.com August 2003

Perforce is a product of Perforce Software, a 60-employee company which makes nothing else. It’s
commercial, but cheap as these things go and free for open source projects, and it’s properly war-
ranted. If the software ever breaks, Perforce Software accepts responsibility for that. And there’s
truly excellent support. Some well-known systems using Perforce are Qt, Perl and Unreal Tourna-
ment 2003.

Homepage: http://www.perforce.com/

Download: http://www.perforce.com/perforce/loadprog.html

Pricing: 750 USD pr. user for the first year, 150 USD pr. user subsequently, discounts for
large orders, free of charge for free-software projects

Supported plattforms (client and server):

Linux: i386, Alpha, Sparc, PowerPC, MIPS, IA64, S390

Other Unices: FreeBSD, Solaris, MacOS X and almost 20 others

Other OSes: MacOS 8.5,Windows NT/XP/2000, AmigaOS, OS/2, BeOS,VMS and roughly
10 more

Perforce and its makers

Figure 1: A 3D visualization of the example depot as it evolves at the end of this article: The planes show
the release-, development- and vendor-branches with their respective subdirectories, the green arrows
symbolize the integrations.

/vendor

/vendor/coin /vendor/qt

(D i rec tor ies) (Di rec tor ies)/src/main

/src/main/coin /src/main/qt /src/main/src

(Di rec tor ies) (Di rec tor ies) (Di rec tor ies)/rel

/rel/1.0 /rel/1.1

(Di rec tor ies) (Di rec tor ies)

KNOW HOWPerforce

The second line says that in general,
everyone has list rights for everything. It
establishes the default. The third line
gives buildmaster user billg root access,
meaning he can change people’s rights
and do other administrative tasks.

The last line grants billg the right to
write (and read) to the vendor tree. (This
very last line isn’t really necessary: Since
billg has superuser rights everywhere, he
also has write rights to the vendor tree.
It’s good to have, though, in case billg‘s
superuser tasks are moved to someone
else.) In lines 4–5 all members of the per-
force group developers (hopefully
including billg) gain the right to write to
the main development tree and to read
the vendor tree.

Untouchable
Back to our work scenario: While the
buildmaster is upgrading Coin, one of
the developers is busy debugging, and
has scattered a pile of debugging printfs
all over her devel/coin directory. When
she runs p4 sync routinely to pick up

other developers’ changes, most of Coin
is updated. But not all: If you’re working
on a file, p4 sync doesn’t touch that file.
Hence, the files containing debugging
instrumentation aren’t updated in the
developer’s working directory.

The developer can either throw away
the debugging code with p4 revert or try
to merge her debugging code into the
new version with p4 resolve -am. Person-
ally I’d try the automatic merge: perforce
usually gets it right and even if I get a
message talking about conflicts I can
either switch to p4 revert or resolve the
conflicts by hand if there’s just a few.
After revert it may also be necessary to
run p4 edit to start editing the file again.

A little later the bug is fixed and it’s
time to check in the fix. A careful devel-
oper starts by running p4 diff -du and
examining the result, a unified diff. Any
files that contain only debug output can
be reverted (p4 revert), and then it’s time
to sync to the latest version, check that
everything works, rerun the diff, make
sure that nothing looks odd … and at last
run p4 submit.

Users of perforce integration (such as
p4.el for emacs) will be typing different
commands, but the principle is generally
the same.

Released!
Another task one simply can’t avoid dur-
ing software development is to release
something. I suppose we all hate it, judg-
ing by how much we put it off, but it has
to be done.

With perforce, the easiest way is to
make a new branch for the release, do
testing and bugfixing there while most
developers go on working on the main
development tree, and finally integrate
the fixes back to the main tree so they’re
also included in the next release.

The command to make a branch is
called p4 branch and works like p4 inte-
grate: You tell it where to branch from
and where to. Normally both locations
are directories. To make a new release,
1.1, billg makes a new rel1.1 directory,
runs p4 client and changes his view to
what is shown in Listing 4.

Next, our friend billg needs to inte-
grate the development source tree into
rel/1.1. The same command as above
can be used, cd ~billg/work/projectx; p4
integrate devel/... rel1.1/...; p4 submit

made visible in three subdirectories of
~billg/work/projectx.

The ~billg/work/projectx/vendor dir-
ectory contains everything perforce
stores in //depot/projectx/vendor. The
three dots ... mean all subdirectories and
files. ~billg/work/projectx/devel con-
tains everything perforce stores in
//depot/projectx/src/main, and finally
~billg/work/projectx/rel1.0 contains
everything in the perforce //depot/
projectx/rel/1.0 tree. An ordinary pro-
grammers’ client will usually be much
simpler like in Listing 2.

Everything under control
Before going on, I’ll make a bit of a
detour to satisfy the control freaks
among you. Yes, you can control access.
If you want only the buildmaster to have
write access to //depot/projectx/vendor/
and the programmers to have write
access only to //depot/projectx/src/main,
you can put all the programmers in a
group (p4 group) and use p4 protect to
assign rights (see Listing 3).

50 August 2003 www.linux-magazine.com

...
Use 'p4 help client' to see more about client views and options.
...

Root: /home/billg/work/projectx

Options: noallwrite noclobber compress crlf unlocked nomodtime rmdir

View:
//depot/projectx/src/main/... devel/...
//depot/projectx/vendor/... vendor/...
//depot/projectx/rel/1.0/... rel1.0/...

Listing 1: A buildmaster’s client view

...
Use 'p4 help client' to see more about client views and options.
...
Root: /home/twee/work/projectx
...
View:

//depot/projectx/src/main/... devel/...

Listing 2: An ordinary member of the project

Protections:
list user * * //...
super user billg * //...
write group developers * //depot/projectx/src/main/...
read group developers * //depot/projectx/vendor/...
write user billg * //depot/projectx/vendor/...

Listing 3: Access control

PerforceKNOW HOW

rel1.1/... for example. The p4 commands
could also use the depot paths
(//depot/projectx/src/main/... and so on)
but I find it easier and more natural to
use the paths that are visible in my file
system.

During the release phase, part of the
team works on the rel/1.1 tree and sub-
mit some fixes there. Meanwhile, billg
makes sure to integrate all the work back
to the main tree so that the main team
gets the bugfixes too. The command to
do it is p4 rel1.1/... integrate devel/... –
the same as above, except that the direc-
tion of integration has been reversed. In
case of conflicts, a p4 resolve -am or sim-
ilar may be necessary to resolve them.

As before, integrate will only consider
those changes that are new since the pre-
vious integration. So, if there’s a
temporary workaround on the release
bugfix only meant for this release, it’s
enough to tell p4 integrate “no, I don’t
want to integrate that one” once, and
perforce will remember that.

Finally, when the release is built, one
can set a label on the directory tree using

p4 label, so that later it’s
easy to e.g. make a diff
between release 1.1 and
1.1.1 (p4 diff or diff2), or
make another branch in
case there’s a security
problem and an 1.1.0.1
must be released.

More features
There’s a lot more features. I’ll mention
three biggies:
• Dispersed teams can use p4p, the per-

force proxy, to get more speed across
the network. With the proxy, data is
cached extensively. The proxy runs at
each site, and there’s one main per-
force server. For example, during
Unreal Tournament 2003 development
five different companies around the
world all accessed the same server.

• Anyone working with graphics or
other binary files can use the file type
support, e.g. to turn off Id expansion
on XPM files. In a 200k XPM file,
there’s about 0.04 percent chance of
finding the four bytes 0x24 0x49 0x64

0x24 that code for Id. High enough
that sometimes XPM files are cor-
rupted, unless the version control
system gets it right.

• There’s a rudimentary job tracking
system built into perforce, and an inte-
gration system called P4DTI. P4DTI is
much bigger, it’s really worth an arti-
cle all by itself. It integrates perforce
with bugzilla and some other similar
systems.

Now, at the end, if you like what you’ve
read, you may want to install perforce for
real and try it out. If you want to use it
for a free software project with more than
two people, ask support@perforce.com
for a free license. And see if you can
make your p4d live longer than mine: 455
days before a power cut spoilt the fun. ■

View:
//depot/projectx/src/main/... devel/...
//depot/projectx/vendor/... vendor/...
//depot/projectx/rel/1.1/... rel1.1/...

Listing 4: The view of a new release

KNOW HOWPerforce

advertisement

