
ing of two or more partitions that are
addressed as an array. The performance
of this array will depend on the clock
speed and processor load as well as the
transfer rate of the individual disks.

Never Mind the Quality, feel
the RAID
The Raid principle was described in a
paper called “A Case for Redundant
Arrays of Inexpensive Disks (RAID)” [1],
which was published at Berkeley in 1988
by Katz, Gibson and Patterson. Infor-
mation is distributed across multiple
(redundant) disks, and depending on the
logical relationship between the disks,
this will either improve the transfer rate
or provide redundancy. 

Since then about a dozen Raid levels
have been specified. Version 0.90 of the
Linux Multiple Device supports five dis-
tinct Raid levels (refer to the “RAID
Levels” box).

Migrating On-the-Fly
The following workshop discusses how
to convert an existing Linux system to a

Raid 5 system with three disks on-the-fly.
This approach has the advantage that
the information on the existing disk do
not need to be copied to a fourth, how-
ever, it is definitely a good idea to back
up your data – simply mistaking one
name could lead to you overwriting your
system disk. 

The Raid tools we will be using, and
the mdadm program, are included with
SuSE Linux 8.2 Professional and Red Hat
9.0.

The starting point for our migration
task is a system with three IDE disks.
The disks do not need to be identical for
a Software Raid, but they should be
more or less the same size and have
approximately the same transfer rate.

hdc on our sample system already con-
tains a working Linux system with the
following partitions: hdc1 (later md0)
with 200 MBytes as /boot set to use an
ext3 filesystem, hdc2 (later md1) with 1
GBytes as swap and hdc3 (later md3)
with 5 GBytes as the top level root parti-
tion /, again using ext3 as the filesystem.
To allow the system to boot under as

Experts continue to argue about 
the usefulness of Software Raid
systems. Statements such as, “Soft-

ware Raid? Couldn’t you afford a
hardware solution?” are typical. 

Of course, Software Raid isn’t exactly a
high-end solution, but in the low to
midrange segment it is an alternative to
a hard disk controller with Raid capabili-
ties, where the driver and thus again the
main CPU does all the work. So why not
opt for Software Raid?

The Multiple Device driver allows the
kernel to support up to 256 multiple
devices (/dev/mdX) independently of
your hardware configuration. A multiple
device is a virtual block device compris-

Security of the data on your hard

disks doesn’t always have to rely on

hardware solutions. If your machine

has a fast enough processor and you

can do without a hot swap facility

then Software RAID should meet

your needs. The only question now is

how to migrate your your current

installation with a minimum of fuss?

BY CARSTEN WIESE

Workshop: Setting up and Managing Software RAID

Software safety first

58 August 2003 www.linux-magazine.com

Software RAIDSYSADMIN

Carsten Wiese works
as a Systems Integra-
tor for Höft and
Wessel, in Hannover,
Germany. Amongst
other tasks, Carsten
designs and imple-
ments Raid systems
and high availability solutions, unfor-
tunately, not only for Linux.

TH
E A

UT
HO

R



many (error) conditions as possible, we
decided to use Raid 1 for the /boot
partition.

Lilo instead of Grub
We opted to use lilo as our boot loader,
as lilo version 22.0 or later can store
emergency boot code in the master boot
record on the other Raid drives. If hda
fails, we can still boot form hdb or hdc in
this case. Grub does not have this capa-
bility. We will specifying the boot =
/dev/hda option for lilo while migrating
the system.

The swap partition will be placed on
the Raid 5 array. Of course, you could
use three single swap partitions. If sys-
tem stability in case of hard disk failure
is very important to you, you should def-
initely put swap on a Raid 5 array. Even
if a disk fails while the swap partition is
being accessed, the kernel will still han-
dle the failure gracefully. 

During the migration phase, the kernel
will view the current system disk hdc as
a failed third disk in the Raid array. If
you are creating a Raid 1 array, you can
use this approach with two disks.

Kernel Options
You will need to enable multiple device
support for the 2.4 kernel, as is shown in
Figure 1. Additionally, the root filesystem
should be configured in the kernel.
Patches are available from [2] for the
older kernels, 2.0 and 2.2.

The next step, after compiling and
installing the kernel, is to set up and
manage the Raid array. We will be using
the Raid Tools package (version 1.0, [4])
and the mdadm [5] program. The follow-
ing example uses the Raid Tools.

Step by Step to RAID 5
After completing the preparation work,
type swapoff -a to disable the swap area,
and then comment out the /etc/fstab
entry. Then use fdisk to create three 0xfd
Linux raid auto type partitions on disks
hda and hdb (see “Partitioning the Raid
Disks”). The Linux raid auto partition
type allows the kernel to recognize the
Software Raid on booting.

59www.linux-magazine.com August 2003

SYSADMINSoftware RAID

Linear Mode
At least two disks are banded to form a vir-
tual drive. If the capacity of the first drive is
exhausted, write operations continue on the
second.This mode will not provide redun-
dancy or increase the transfer rate.The total
capacity is equal to the sum of the capacities
of all disks.

Raid 0 – Data Striping
Requires two or more drives. Striping will
divide the data into chunks and distribute it
evenly across the disks to boost perfor-
mance. Again the total capacity is equal to
that of all disks, however, this level does not
provide redundancy.

Raid 1 – Disk Mirroring, Disk Duplexing
Raid 1 writes the same data simultaneously
to two drives. As this is a redundant solution,
the capacity is equal to that of the smaller

drive. Performance may improve for read
operations.

Raid 4 – Data Striping with Parity Drive
This mode is uncommon, as Raid 5 uses dis-
tribute parity to improve performance. At
least three disks are required. One disk stores
parity information while the other two are
used for data striping as in Raid 0. Perfor-
mance will depend on the transfer rate of
the parity drive, and redundancy is provided.
The total capacity is equal to the sum of all
disks minus the parity disk.

Raid 5 – Data Striping with Distributed Parity
The data chunks and parity information are
distributed evenly across at least three disks.
If one disk fails, its content can be recon-
structed from the remaining disks.The total
capacity is equal to that of Raid 4 with
improved performance.

RAID Levels

Figure 1: Multiple device support must be enabled for the kernel – default for most current distributions

Building Multiple Devices
The mkraid /dev/md0 command creates
the new Raid 1, md0, by reference to the
first part of /etc/raidtab without the hdc1
partition, as this partition is marked as
failed in /etc/raidtab. Amongst other
information, the output shows the parti-
tion size for hda1 and hdb1, and the
position of the Raid super-block, 200704
KBytes. You can query the current status
of a multiple device at any time using cat
/proc/mdstat; at this stage, it should look
something like Listing 2.

Most distributions create device files
md0 through md255 by default. If these
entries are missing below /dev, you will
need to use the mknod -m 0660
/dev/mdX b 9 X syntax to create the
devices, with root as the owner and disk
as the group. Now create the /etc/raidtab
file, Listing 1 shows an example.

The multiple devices md1 and md2 are
created using the same approach. You
can then go on to format the multiple
devices, creating a swap partition on
md1, and an Ext3 partition on both md1
and md2.

We will be placing the root filesystem
on the multiple device /dev/md2 to allow
lilo to discover the new root system;
(root=/dev/md2 in /etc/lilo.conf). The
boot=/dev/md1 entry must remain as it
is for the time being.

Copying Data to the RAID
Switch your Linux system to single-user
mode and mount md2 below /mnt/sys-
tem, and md0 below /mnt/boot. You can
now copy the data from the system disk



out) /dev/hdc2 and /dev/md1. Run lilo to
apply the new configuration, and reboot
to single-user mode. Check whether md0
and md2 have mounted correctly.

Rebooting the RAID
After completing these steps, you can
now add hdc to the Raid array. To do so,
partition hdc as described in the “Parti-
tioning the Raid Disks” insert. Comment

out the failed disk in /etc/raidtab and
reinstate the raid-disk entries. The fol-
lowing commands:

raidhotadd /dev/md0 /dev/hdc1
raidhotadd /dev/md1 /dev/hdc2
raidhotadd /dev/md2 /dev/hdc3

will add the three partitions to the Raid
array. Wait until the rebuild process has
completed before performing the follow-
ing steps. cat /proc/mdstat shows you
the current progress state.

The second to last step is to change
the boot entry in the /etc/lilo.conf file 
so that it knows about these new boot
partitions. The boot option should now
read:

boot=/dev/md0

and add a new line:

raid-boot-extra=/dev/hda,U
/dev/hdb,/dev/hdc

Run lilo as a command so that these
changes are applied to the system.≠ You
can then reinstate swap in /etc/fstab.
The next reboot is the exciting bit – but
you will need to wait for the Raid array
to complete rebuilding.

Mdadm or RAID-Tools?
So far, we have only used the Raid Tools.
Which of these tools is the better will
depend to a large extent on the task 
in hand. In contrast to the Raid Tools
package, which comprises multiple pro-
grams, the mdadm program provides the
required functionality within a single
tool, and can even create Raid arrays
without a configuration file. 

The tool’s most interesting feature is
the --monitor parameter, which allows
you to monitor multiple devices and mail
the administrator, or even launch a pro-
gram, in case of a failure. Additionally,
mdadm --examine /dev/mdX can read
the Raid superblock.

The RAID Superblock’s
mystery
When you create a multiple device, the
Raid Superblock is created by parsing the
information in the /etc/raidtab file,
assuming that the persistent-superblock
option in this file is set to 1. During the

hdc3 to /mnt/system – using the follow-
ing syntax, for example, find . -xdev |
cpio -pm /mnt/system.

Delete the contents of the /mnt/
system/boot directory and then copy all
the entries in /boot, including symbolic
links, to /mnt/boot. Then in the /mnt/
system/etc/fstab file swap the entries for
/dev/hdc1 and /dev/md0, /dev/hda3 and
/dev/md2, and swap (still commented

60 August 2003 www.linux-magazine.com

Software RAIDSYSADMIN

#/etc/raidtab
# /boot md0 as RAID 5
raiddev /dev/md0 # This
is the name used to access the
device
raid-level 1 # The RAID
Level
nr-raid-disks 3 # The
number of disks in the RAID array
chunk-size 64 #
Irrelevant for RAID1 but must be
present
persistent-superblock 1 #
Required for booting the disks
nr-spare-disks 0 #
Define a spare disk here
device /dev/hda1
raid-disk 0
device /dev/hdb1
raid-disk 1
device /dev/hdc1
#raid-disk 2 #
Required after migration
failed-disk 2 # as
hdc is the current system disk
#--------------------------------
---
# swap md1 as RAID 5
raiddev /dev/md1
raid-level 5
nr-raid-disks 3

chunk-size 64
parity-algorithm left-symmetric
persistent-superblock 1
nr-spare-disks 0
device /dev/hda2
raid-disk 0
device /dev/hdb2
raid-disk 1
device /dev/hdc2
#raid-disk 2
failed-disk 2
#--------------------------------
---
# /root md2 as RAID 5
raiddev /dev/md2
raid-level 5
nr-raid-disks 3
chunk-size 64
parity-algorithm left-symmetric
persistent-superblock 1
nr-spare-disks 0

device /dev/hda3
raid-disk 0

device /dev/hdb3
raid-disk 1

device /dev/hdc3
#raid-disk 2
failed-disk 2

Listing 1: The Raid Tools configuration file

Personalities : [linear] [raid0] [raid1] [raid5] [multipath]
read_ahead 1024 sectors
md0 : active raid1 hdb1[1] hda1[0]

200704 blocks [3/2] [UU_]

unused devices: <none>
handling MD device /dev/md1
analyzing super-block
disk 0: /dev/hda2, 987997kB, raid superblock at 987904kB
disk 1: /dev/hdb2, 987997kB, raid superblock at 987904kB
disk 2: /dev/hdc2, failed

Listing 2: Raid Status (/proc/mdstat)



boot process, the kernel will search for
Raid superblocks on any drives attached
to the system. 

The system uses the information
stored in the superblock and the parti-
tion type 0xfd - Linux raid autodetect to
mount multiple devices. The 4 KByte
data block, is located at the beginning of
the first even 64 KByte block on each
multiple device partition – thus, a maxi-
mum of 128 KBytes of a partition’s total
space can be used for the superblock.

Listing 3 shows the contents of the
superblocks as output by the mdadm --
examine /dev/hda1 command. Line 13
shows the health status of the array. no-
errors indicates that everything is OK. No
need to worry about the dirty entry – this
simply means that some information is
waiting to be written out to disk. If the
system is downed gracefully, this entry

will automatically toggle to clean.
How do I get rid of the superblock?

This question crops up regularly when a
disk is removed from a multiple device
array for re-use. The mdadm --zero-
superblock /dev/hda1 command should
get rid of the intractable beast. You can
use dd if=/dev/zero of=/dev/hda1
bs=1 seek=200704 count=4 instead.
The last command uses dd to write four
1 KByte blocks of null characters to
/dev/hda1 starting at position 200704
KBytes. The exact position, this is 200704
KBytes in our case, is output on booting
or can be derived by reading the Raid
superblock itself.

Monitoring a Disk
Of course, if you use a Raid system, you
will want to be alerted if things go
wrong. One way of doing this is to use

mdadm≠ in monitor mode, as previously
described. A quick look at the /proc/
mdstat file, either using a script or man-
ually, will also indicate the fail state of a
multiple device, or a disk. If you use the
BigBrother monitoring tool, you can use
the bb-mdstat.sh script from [6] to moni-
tor your Software Raid.

In case of disk failure, most admins
will be interested in automatic recovery.
Just like most Raid controllers, our Soft-
ware Raid is also capable of providing a
spare disk (hot spare). If a spare disk is
available, the kernel can automatically
fail over to the spare, if a Raid disk fails.
To allow this to happen, you will need to
modify the /etc/raidtab file again using
the Raid Tools.

Some manual recovery steps are
unavoidable if a you do not have a spare
disk. In the case of the Raid 5 array we
just created, we would need to down the
system and add a new disk with the
same partitioning to replace the failed
disk. After rebooting the system, raidho-
tadd /dev/mdX /dev/hdY will add the
new disk to the Raid; the rebuild should
start a few minutes later. 

Finally, you might like to refer to the
Software Raid Howto [7] for additional
information. ■

61www.linux-magazine.com August 2003

SYSADMINSoftware RAID

[1] David A. Patterson, Garth A. Gibson and
Randy H. Katz:“A Case for Redundant
Arrays of Inexpensive Disks (RAID)”,
http://sunsite.berkeley.edu/TechRepPages/
CSD-87-391

[2] Raid Kernel Patches:
http://people.redhat.com/mingo/
raidpatches

[3] Kernel Howto:
http://www.tldp.org/HOWTO/
Kernel-HOWTO.html

[4] Raid Tools:
http://people.redhat.com/mingo/
raidtools

[5] “mdadm”:
http://www.cse.unsw.edu.au/~neilb/
source/mdadm/

[6] BigBrother Script:
http://www.deadcat.net/cgi-bin/
download.pl?section=1&file=bb-mdstat.
sh 

[7] Software Raid Howto:
http://www.tldp.org/HOWTO/
Software-RAID-HOWTO.html

INFO

The partitions on the new Raid disks hda and hdb should be identical; the partition list for hda
follows:

Device Boot Start End Blocks Id System
/dev/hda1 1 25 200781 fd Linux raid autodetect
/dev/hda2 26 148 987997+ fd Linux raid autodetect
/dev/hda3 149 757 4891792+ fd Linux raid autodetect

Partitioning the Raid Disks

01 /dev/hda1:
02 Magic : a92b4efc
03 Version : 00.90.00
04 UUID : 243e03bb:e3a486c3:ebf23ec9:fc518e36
05 Creation Time : Fri May 9 17:17:28 2003
06 Raid Level : raid1
07 Device Size : 200704 (196.00 MiB 205.52 MB)
08 Raid Devices : 3
09 Total Devices : 4
10 Preferred Minor : 0
11
12 Update Time : Fri May 9 21:57:15 2003
13 State : dirty, no-errors
14 Active Devices : 3
15 Working Devices : 3
16 Failed Devices : 1
17 Spare Devices : 0
18 Checksum : 16cd8686 - correct
19 Events : 0.25
20 Number Major Minor RaidDevice State
21 this 0 3 1 0 active sync /dev/hda1
22 0 0 3 1 0 active sync /dev/hda1
23 1 1 3 65 1 active sync /dev/hdb1
24 2 2 22 1 2 active sync /dev/hdc1

Listing 3: The Raid Superblock


