
platforms and has spoken both SSH 1.X
and 2.X since version 2.1.0. OpenSSH
uses the OpenSSL [5] crypto-routines and
is part of most Linux distributions.

The Right Connection
On the client side SSH comprises ssh/slo-
gin as a functional replacement for
telnet, rlogin, or rsh and scp for file copy-
ing operations (replacing ftp and rcp).
sshd (the SSH daemon) provides the
server side. In addition to this there are
some management tools, such as
ssh-keygen (a key creation utility), ssh-
agent (to provide key management and
login automation), ssh-add (for register-
ing new keys with the SSH agent), and
make-ssh-known-hosts (allows you to
create a list of known public host keys
for a domain). ssh must be running both
on your own machine and the other end
of the connection; to be more precise,
to open a connection from A to B,
machine A must have the client software
and B must be running the daemon. To
open a secure connection to another
machine, you can enter either of the
following:

ssh UserID@RemoteHost
ssh -l UserID RemoteHost

Userid@ is only required if you have a
different username on the remote sys-
tem. When a connection is opened (via
TCP port 22) computers A and B will
exchange protocol versions. If the proto-
col versions are incompatible, the
connection cannot be completed:

Protocol major versions differ:U
2 vs. 1

The -1 or -2 options let you switch ver-
sions quite painlessly. You can add a
command to run on establishing the ssh
connection. It should be placed in quotes
to prevent the shell from parsing it:

huhn$ ssh plutarch "ls lang"
huhn@plutarch's password:
English/ German/

It is also possible to remotely launch
applications that take command of the
screen, although doing so does require
an additional parameter to specify a
“pseudo-terminal”. The -t flag tells SSH
to encrypt output from the terminal and
display it in decrypted form on your
screen: ssh -t plutarch "mutt"

If you want to encrypt an X application
and launch it on a remote machine, both
the client and the server side will need to
implement X forwarding. The server side
configuration file sshd_config is located
in the /etc/ssh directory. As is the case
for all system global settings, only the
administrator root is permitted to modify
it. The appropriate entry is called X11For-
warding yes. The client configuration is
located in the same directory and called
ssh_config (without a “d”). Most distrib-
utions will have an entry like:

ForwardX11 no

To enable forwarding root needs to
change the line to ForwardX11 yes

One alternative is to enable this fea-
ture temporarily using the -X option. To
launch an X application like Mozilla
remotely, either use ssh [UserID@]Remo-
teHost or ssh -X [UserID@]RemoteHost to
log on and enter the appropriate com-
mand: mozilla &. The ampersand leaves
the process running in the background,
so the terminal stays free to accept other
commands. One practical feature of X
forwarding is the fact that the DISPLAY
variable is automatically configured cor-

SSH (Secure SHell) is both the proto-
col name and the implementation,
that is the program itself. It is a

secure method of logging on to other
computers using an encrypted connec-
tion, of running commands (including X
applications) on the remote machine,
and of copying data between systems.
Similar non-encrypting protocols such as
telnet or ftp send both data and pass-
words across the wire in the clear.

Currently two incompatible versions of
the SSH protocol exist – SSH 1.X and SSH
2.X. Version 1.0 was released in 1995 by
Tatu Ylönen, a Finnish developer, and
became the accepted standard. Use of the
software was free up to version 1.2.12,
but licensing restrictions were applied
later [2]. OpenSSH [3] is based on the
last free version, and is the subject of
ongoing development and enhancement.
Originally an OpenBSD only project,
OpenSSH is now available for other Unix

82 August 2003 www.linux-magazine.com

The Unix heritage programs Telnet

and FTP provide facilities for

connecting and transferring data to

other machines on the network. But

they are insecure, as they transfer

data in the clear. The Secure Shell

tools provide a secure alternative.

BY HEIKE JURZIK

Command Line: ssh & scp

Secure Transmissions

ssh & scpLINUX USER

huhn@asteroid:~$ ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/home/huhn/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/huhn/.ssh/id_dsa.
Your public key has been saved in /home/huhn/.ssh/id_dsa.pub.
The key fingerprint is:
72:d5:ad:76:cf:e4:89:a0:8e:f9:57:66:87:55:cd:cc

Listing 1: Generating a DSA Key

rectly – so the connection is not only
secure, but also simple to establish.

Secure Transport
The second major field of application for
SSH, besides secure login, is file transfer.
Using scp to copy a file is almost as sim-
ple as using cp for local copying. A call
to scp typically looks like :

scp file UserID@RemoteHost:

Assuming that the usernames match,
you can leave out the UserID. If you do
not want to simply copy the file to your
home directory, you can specify the path
after the colon (scp file UserID@Remote-
Host:/tmp/archive/).

The -r parameter allows you to copy
complete directory trees recursively,
and the cp option -p (“preserve” user
and group privileges) is also available.
Of course, this only makes sense if user
and group IDs are identical on both
systems.

Your Own Key
When transferring data between com-
puters, or logging on to remote systems
on a regular basis, continual password
prompts can be a nuisance; and the
interactive password prompt rules out
scripting standard tasks. SSH provides a
facility for depositing a key on a target
system allowing it to check your logon
credentials without requiring a pass-
word. The ssh-keygen (key generation)
program allows you to create the
required key (Listing 1). Protocol version
1.X uses RSA keys, whereas version 2.X
uses DSA encryption. The -t option spec-
ifies the type of key.

The “passphrase” prompt in this list-
ing has nothing to do with your
password on the target or local system –
instead the passphrase is used to protect
your keypair (which comprises a public
and private key). This kind of protection
is useful if you want to deploy SSH on a

laptop, for example. If your laptop is
stolen, and the thief discovers your SSH
key on the hard disk, it could be used to
compromise another system.

The keypair is stored in the .ssh subdi-
rectory (note the dot) below your home
directory, comprising id_dsa and id_
dsa.pub. The first file is your secret, pri-
vate key (a binary file that cannot be
manipulated using an editor). The sec-
ond file with the .pub suffix contains
your public key. You can copy it to a tar-
get system to provide automatic logon
facilities on that machine:
• Copy ~/.ssh/id_dsa.pub to your home

on the target system: scp ~/.ssh/
id_dsa.pub [UserID@]RemoteHost:

• Log on to the target system and check
whether a .ssh directory already exists;
if not, use mkdir ~/.ssh to create it

• Change to the directory (on the target
machine, cd ~/.ssh) and add the file
you copied from your machine to the
authorized_keys file (this file may
already exist): cat ~/id_dsa.pub >>
authorized_keys (if the file does not
exist, this command will create it).

• Delete the id_dsa.pub from the main
directory (and only there!), as you no
longer need it: rm ~/id_dsa.pub

Ensure the .ssh directory has the correct
privileges assigned, that is, 700 for the
directory itself (readable, writable, acces-
sible to the user, and no-one else).
Additionally, the home directory should
not provide write privileges to the group
(g) or others (o); just to make sure, you
might like to run chmod go-w ~ and
chmod 700 ~/.ssh.
The ssh-agent and ssh-add programs
allow you to automate querying the
passphrase. The SSH agent uses ssh-add
to store any passphrases you supply,
removing the need for password prompts
when you launch ssh. This is particularly
useful, if the ssh connection is frequently
disestablished and re-established.

First launch the SSH agent: ssh-agent.
It returns a number of command lines

that you may need to copy and run to set
several environment variables:

SSH_AUTH_SOCK=/tmp/ssh-U
XXO0M4II/agent.32162; export U

SSH_AUTH_SOCK;
SSH_AGENT_PID=32163; export U

SSH_AGENT_PID;
echo Agent pid 32163;

Of course, we only included this proce-
dure, where ssh-agent is used to output
the command lines, to illustrate the
required step. In a real-life situation you
could use eval to evaluate the output
from ssh-agent instead. To do so, enter
eval `ssh-agent`. The agent needs to be
running before you can use ssh-add:

huhn$ ssh-add -l
The agent has no identities.

Calling ssh-add without any additional
parameters tells the tool to search the
~/.ssh directory for private keys, and
prompts you to enter the passphrase for
each key it finds.

huhn$ ssh-add
Enter passphrase for /home/U
huhn/.ssh/id_dsa: *****
Identity added: U

/home/huhn/.ssh/id_dsa U

(/home/huhn/.ssh/id_dsa)

The program learns the passphrase dur-
ing this step:

huhn$ ssh-add -l
1024 f3:c9:b6:5d:23:3a:9d:61:U
50:19:63:3c:e8:22:7c:86 U

/home/huhn/.ssh/id_dsa (DSA)

You can now log on to the target -
machines (from the current shell and
any other shells where you have
set SSH_AUTH_SOCK and SSH_AGENT
_PID correctly) without entering a pass-
word. ■

83www.linux-magazine.com August 2003

[1] http://www.ssh.com/
[2] http://www.openssh.com/history.html
[3] http://www.openssh.org/
[4] http://www.employees.org/~satch/ssh/

faq/ssh-faq.html
[5] http://www.openssl.org/

INFO

LINUX USERssh & scp

DISPLAY: This environment variable specifies
the X display X Window programs will be dis-
played on. It typically defaults to “:0”,
meaning that the local (first) X server is
accessed. In the case of an SSH login with X
forwarding from computer1 to computer2,
the variable is set to something like “com-
puter1:10.0”.

RSA: An encryption algorithm named after its
creators Rivest, Shamir, and Adleman. It was
developed in 1977.
DSA: OpenSSH uses the “Digital Signature
Algorithm”as its encryption algorithm.This
algorithm was published in 1994 by the
National Institute of Standards and Technol-
ogy (NIST).

GLOSSARY

