
80 September 2003 www.linux-magazine.com

FilesystemsLINUX USER

“clean” (see State field), having been
unmounted cleanly.

The lastcheck and checkinterval work
in a similar way. The first field stores the
date of the last filesystem check, and the
second shows when the next check is
scheduled. Both of these values are
needed for safety reasons, to ensure that
the filesystem is given a thorough service
after a long period of use, thus avoiding
possible errors (as caused by bit flips) –
this is something like having your auto-
mobile serviced.

The final important field is labeled
First I-Node and contains the I-Node with
the root directory (/) for this filesystem –
in other words the I-Node representing
the access point to this filesystem from
the Linux user’s perspective.

This I-Node points at a datablock that
stores links between names and the
remaining I-Nodes in the directory.
Entries often point to I-Nodes that repre-

sent directories themselves, and this way
all the files on the filesystem can be
located.

Journaling Filesystems
The Ext2 (Second Extended) Filesystem
works really well, and was specially cre-
ated for Linux, however, hard disks have
grown considerably over the years, and
today many users have large partitions
on Linux. One problem has become par-
ticularly evident – if a computer is
powered off without unmounting the
filesystem cleanly, the filesystem check
will take quite a while when the system
is rebooted.

That is fine for a home computer, used
for storing song tracks or movies, but it
is definitely not so in the case of a pro-
duction server. If the filesystem creates a
so-called journal, only the journal needs
to be parsed in case of failure to restore
the filesystem to its current state.

Besides the actual data, a file-
system stores a variety of
information about itself. Status

information, access times, and structures
are all vital parameters that operating
systems and programs will read from the
filesystem for use at runtime.

The Superblock
The superblock stores a variety of meta-
information. As this block is vital to
filesystem use, it is automatically copied
to various parts of the filesystem.

If the superblock is damaged or over-
written, it is normally possible to restore
the filesystem from a copy. The
superblock is normally located at posi-
tion 0, with a copy at 8193 (or 32768,
depending on creation parameters).

You can use e2fsck -b 8193 to check a
filesystem for errors, even if the first
copy of the superblock has been dam-
aged. If the system is mounted with
write permissions, the program will
restore the first superblock after per-
forming the check.

The superblock also specifies the
filesystem type and records the number
of times the filesystem has been
mounted without being checked. The
following section provides an overviw of
the most important superblock compo-
nents (and Figure 1 illustrates them).

I-Node Count and Blocks Count contain
the total number of I-Nodes and blocks
on this filesystem. Similarly, Free Blocks
and Free I-Nodes show the number of
free blocks.

When a filesystem is created, typically
a certain percentage of the total block
count is reserved for use by the adminis-
trator, root. This figure is stored in the
Reserved-Blocks Count field.

The next few fields in the illustration
apply to the boot process. Mount Count
indicates how often this filesystem has
been mounted since last being checked.
Max Mount Count stipulates a threshold.
When the threshold value is reached, the
operating system will perform a filesys-
tem check, even though the filesystem is

Users with typical, run-of-the-mill computers will tend to use a hard disk. But

very few people know how exactly files are stored on a disk or what options

are available. We will be attempting to shed some light on the subject in this

article. BY MARTIN SCHULZE

Hard Disks and Filesystems

I-Nodes and Superblocks



81www.linux-magazine.com September 2003

LINUX USERFilesystems

Many people believe that –
as a journal is created – regu-
lar filesystem check is
unnecessary for journaling
filesystems, and of course,
recovering from a crash is a
lot easier if you use Ext3, JFS,
XFS or ReiserFS. However,
this does not provide any pro-
tection from flipped bits or
inconsistencies arising due to
other malfunctions.

This is one of the reasons
why the Third Extended
Filesystem (Ext3), an
enhancement on Ext2, contin-
ues to perform filesystem checks. You
specify how often a check will be per-
formed when creating the filesystem and
this data is stored in the superblock, as
described previously. However, Linux
will not check the filesystem on booting,
but only when Max Mount Count has
been exceeded, or lastcheck and checkin-
terval indicate that another check is due.

Hardlinks and Symlinks
Figure 2 shows you the general filesys-
tem structure. When Linux saves a file,
the kernel filesystem driver reserves an I-
Node and multiple data blocks. The
I-Node points to the data blocks that will
store the actual data. Additionally, the
filename is stored in the directory along
with the I-Node.

UNIX is well-known for a special
filesystem feature, links. You can use a
link to add a file to multiple directories
allowing you to use multiple names to
access that file. This makes sense in
more ways than one.

One useful application for links is the
case where a program assumes multiple
roles and these roles are similar apart

from a few operations.
Instead of writing two or
more programs, the program
can read its own name when
called, and react accordingly.
This is what programs such
as gzip and gunzip, or the m-
tools (mdir and mcopy) do.

Debian’s alternative mech-
anism follows a similar
principle. The program name
(such as /usr/bin/vi) is a link
to a file in /etc/alternatives,
where a link to the program
itself is stored. If you have
difficulty remembering long

pathnames, you can create a link in a
directory that will point at the required
file and save you a lot of typing.

Using links has a lot of advantages in
comparison to creating a copy of a file.
For one thing, you do not need to copy
the file, and if it happens to be a CD
image that can save you a lot of disk
capacity. For another thing, you do not
need to synchronize the copy with the
original, as any modifications will be
immediately visible to the link. In fact,
you will be using the original file.

But there are two distinct link types,
and each type is stored in a different way
on the filesystem. The distinct types are
known as hardlinks and symlinks. In the
case of a hardlink multiple directory
entries point at the same I-Node,
whereas a symlink stores the name of
the original file.

Hardlinks
A hardlink the simplest and most effi-
cient way of referencing a file by
multiple names. This method involves
creating a new directory entry, just like
for a new file. However, the directory

entry does not call for a new I-Node or
data blocks, instead using the I-Node for
the original file, and allowing two direc-
tory entries to point at the original
I-Node.

Of course, the system needs to record
this fact somehow, as the I-Node and any
data blocks belonging to it cannot be
deleted until the last directory entry that
points at the I-Node has also been
deleted. The I-Node uses the links_count
field for this purpose – the field is incre-
menting whenever a hardlink is created.
Creating this link increases the value to 2
and not to 1, as two directory entries
now point at the I-Node.

From the filesystem’s perspective both
directory entries are equivalent. When
you delete an entry, the filesystem will
remove the entry from the directory and
reduce the I-Node counter by one. The I-
Node is deleted and the memory it uses
released when the entry counter drops to
zero.

Figure 3 shows how the filesystem
responds to the following link command.

ln foo bar

foo is the original file, and bar is the
additional, new name for the file. As you
can see, a hardlink requires only an addi-
tional directory entry, that is, the
memory overhead is fairly low.

I-Nodes are only unique within the
same filesystem; thus hardlinks cannot

I-Node: On Unix oriented filesystems every
file (and each directory, being a special type
of file) is mapped to an inode. Inodes map
directory entries to data blocks on a partition.
Inodes themselves are special data blocks
that store metadata for the files they point
to.You can envisage them as a kind of data
structure that stores additional information
for a file, such as its length, access permis-
sions, ownership, access times, and pointers
to the blocks in use. Inodes are normally used
by the internal filesystem only.
Block: A block is the smallest unit of space
that can be assigned on a filesystem. By hav-
ing small block sizes such as 1 KByte, we are
limited to the size of the hard disk that is
accessable, but less space is wasted with
small files.
Bit flip:This refers to the inversion of a mag-
netic state on a hard disk, and can be caused
by magnetic fields in the vicinity of the com-
puter.

GLOSSARY

Figure 1: Generic struc-
ture of a superblock

Figure 2: Internal structure of the UNIX filesystem



82 September 2003 www.linux-magazine.com

FilesystemsLINUX USER

what the following
command does.

ln -s foo bar

In the case of longer
pathnames, and par-
ticularly if the name
contains the absolute
path and not only the
filename of the origi-
nal file, the I-Node
will be unable to store
the name. Instead, a
datablock will be
assigned to the sym-
link and stored in the

path to the original file. Figure 5 shows
what the following command does:

ln -s /org/infodrom.org/homeU
/joey/foo bar

Incidentally, you can use relative path-
names, such as ../joey/foo, however, if
you do so, be aware of the following: If
the link is moved to another position in
the directory, the path will no longer
apply, leaving the link pointing at a
black hole.

We have not mentioned the
links_count field in the context of sym-
links so far, as the symlink is handled
like a normal file, leaving a value of 1 in
the field. If the original file is deleted, the
directory entry for the symlink also dis-
appears, but the symbolic link itself
remains, as deleting the file, technically,
does not affect the link. However, the

link will be pointing at a an empty space
now; this is what is referred to as a “dan-
gling symlink”.

Filesystem Check
When a Linux system is booted, the root
filesystem is the first mounted read only,
to allow programs to execute and config-
uration files to be parsed. One of the
next steps the boot process goes through
is to check all the local UNIX-type
filesystems (Minix, Ext2, Ext3, XiaFS,
ReiserFS, XFS, JFS).

If one of these filesystems is not
“clean”, that is, if it was not gracefully
unmounted from the system, a check
will be performed, as inconsistencies
must be assumed. Recent modifications
may not have been incorporated. With a
journaling filesystem, Linux will first
read the journal and check whether all of
these actions have been written out to
disk. The check should restore the
filesystem to a consistent state.

The filesystem check for Ext2 com-
prises five steps. This allows Linux to
ensure that the information stored in the
data structures will be consistent. The
general consistency of the filesystem is
checked first; this means checking the
entire system in a process that can be
extremely time-consuming on larger
filesystems.

During the process, the fsck program
ensures that the value in the links_count
of the I-Nodes corresponds to the num-
ber of links in the directories. fsck
updates the field if it discovers a mis-
match. This also applies to file sizes.

be used across multiple filesystems, in
contrast to symbolic links (symlinks),
which can link across filesystems.

The value of links_count is typically
output by ls -l and displayed in the sec-
ond field (the first field shows the
permissions).

Symbolic Links
Symbolic links, or symlinks, are the sec-
ond way of using multiple names to
access the same file, without having to
copy the original file. The symlink
requests an I-Node, just like a normal
file, and creates an appropriate directory
entry.

However, the I-Node used by the sym-
link points to the name of the original
file. If the name is short enough, it can
even be stored in the I-Node itself – the I-
Node can store up to 29 characters. This
is shown in Figure 4 where you can see

Figure 3: Hardlinks and the filesystem

Figure 4: A “quick” symlink on the filesystem Figure 5: A “slow” symlink on the filesystem



83www.linux-magazine.com September 2003

LINUX USERFilesystems

If the check discovers I-Nodes without
matching directory entries, the nodes are
placed in a special directory called
lost+found, allowing the administrator
to decide whether to delete the file or
move it to an appropriate location.

Creating a Filesystem
Linux uses the mkfs programs to create
filesystems. To give a uniform naming
scheme, the name of the program is typi-
cally the mkfs. prefix and the filesystem
type to be created, for example mkfs.ext3
would create an Ext3 filesystem.

Linux machines tend to use the “Third
Extended Filesystem” (Ext3) or the
Reiser Filesystem (ReiserFS). Various
parameters are available for specifying
how the program will create the
filesytem, or more specifically the num-
ber of I-Nodes, and the maximum
number of files and directories the
filesystem can store.

The -b parameter defines the block
size for the filesystem; this defaults to
1024 bytes (although newer systems may
use a different default). Thus a logical
data block will always use two physical
hard disk blocks. The -b parameter
allows you to change this setting,
although values are restricted to multi-
ples of 1024, that is, you can choose from
1024, 2048, and 4096.

In case of filesystems with a large
number of large files, it might be advis-
able to opt for a larger block size, as this
can improve access speeds. This is
expensive, however, as files can only use
whole blocks. Thus, in our example, a
5000 byte file would waste 3192 bytes in
the second logical block.

Another useful option specifies the
area reserved for root. Normally, five per-

cent of the filesystem is reserved for the
superuser. This ensures that the system
will continue to run, although your hard
disk capacity is almost exhausted, as
programs executed by root can still write
to the filesystem.

You can change this setting using the -
m parameter. You might want to do
without this safety margin for filesys-
tems that will store user data, rather
than system data, such as /home or
/var/spool/news.

The -i parameter specifies the number
of I-Nodes to create relative to the data
payload. If the filesystem will be mainly
used for storing large files, it does not
make much sense to assign an I-Node for
4 KB of data – 10 KB or even 100 KB per
I-Node would make more sense.

On the other hand, it does not make
much sense to assign an I-Node for 4 KB
of data if your filesyste will be storing a
whole bunch of tiny file (like newsgroup
postings). You might like to assign an I-
Node for every 2048 bytes of data in this
case. The number of I-Nodes cannot be
changed on the fly.

The -j parameter is used to create a
journaling filesystem, that is Ext3
instead of Ext2. As the Ext2 and Ext3
filesystems are compatible, you can con-
vert an Ext2 filesystem to a journaling
Ext3 filesytem later. The tune2fs com-
mand is used for this purpose.

Investigating the Filesystem
Normally, users are unable to take a
closer look at the way the filesystem
works, but Linux allows you to investi-
gate the current filesystem configuration,
even on a production system. This func-
tionality is provided by the dumpe2fs
program, which mainly displays the

information stored in the superblock.
Assuming that the superblock is undam-
aged, the location of the superblock copy
is also indicated.

As you can see from this sample
dumpe2fs output for our current filesys-
tem, the copy of the superblock is not
located at block 8193, but at block
32768. This is caused by a filesystem
preference.

Recovery
Knowing where to find a copy of the
superblock, which dumpe2fs refers to as
the Backup Superblock, can be extremely
important. If the original superblock is
damaged, you will be unable to check
the filesystem, and thus unable to mount
it. However, your data is not lost, as you
still have a copy of the superblock.

You can restore the filesystem by
explicitly pointing to the location of the
backup superblock. The syntax for this
task is as follows:

e2fsck -b 8193 /dev/hda3

or (depending on the location of your
superblock copy)

e2fsck -b 32768 /dev/hda3

If this works out, you should be able to
continue using the filesystem. ■

Figure 6: Creating an Ext3 journaling filesystem Figure 7: dumpe2fs output for an Ext3 partition (abbreviated)

Martin Schulze enjoys developing
and enhancing free software; failing
that, he will settle for promoting free
software by helping to organize the
LinuxTag, for example, presenting
keynotes and holding workshops.
You can contact Martin at joey@
infodrom.org.

TH
E A

UT
HO

R


