
lution with your chosen colour depth
(see boxout “Clarity of Colour”). I have
always used a bright green colour key in
my games, and never yet had a problem.

Having chosen a colour, we now have
to tell the surface which one it is!

SDL_SetColorKey(pGeneralTileGfxU
, SDL_SRCCOLORKEY, SDL_MapRGB(U
pGeneralTileGfx->format, U

0, 255, 0));

This function takes the surface, and
applies a colour key of bright green to it.
The colour key has to be given in the
same format as the surface and so we
need to use SDL_MapRGB function
(which is passed the format of the sur-
face), to convert the RGB colour
components. If you’re using 8-bit colour
(i.e. a palletised surface), then this func-
tion will search for the closest match to
the given RGB values in its table. After
specifying the colour key for the surface,

Our title screen in issue 33 (p66)
consisted of one surface and one
blit. But with one surface, and

several blits, we can do much more.
How? Well, we take a single surface and
mark out areas of 32 by 32 pixels. Each
area is called a tile, or a region. We can
then blit each tile to specific places on
the screen surface to build up a complete
image. Because we can blit one tile many
times (and in many different places), we
will use less memory than the welcome
screen, although it covers the same area.
Most platform games use this method.
Even real-time strategy games (like Com-
mand & Conquer and Warcraft) use this
system, although their graphics are iso-
metric in appearance.

By making the tile size uniform across
the whole game, our graphics can be laid
out in predictable places on the surface
image making the code that controls
them much easier to write. We shall also
stipulate that each surface should be 640
pixels wide, giving a consistent number
of tiles (20) on each line. This is an arbi-
trary decision to make the artists work
more uniform: the more options you
support, the greater the room for error!
The code to draw a single tile on screen
is then as illustrated in Listing 1.

Although each tile will be aligned onto
a 32x32 boundary, our exDrawTile func-
tion has been written to draw tiles at any
arbitrary position, allowing it to be re-
used by the render code for the player,
and his enemy’s. Determining which tile
is drawn, and where to place it, is the

responsibility of a loop, and a simple
array of tile indices. We can do that with
a short function as in Listing 2.

Since we have no means to stretch our
tiles, any large features in our levels
(such as the exit gate) will have to be
built by combining several smaller tiles.
Conversely, any images that are smaller
than 32x32 will only occupy a portion of
the tile, and we shall have to utilise
transparent pixels to hide the fact.

In the first part of this tutorial we saw how to load an image into a surface,

and blit it onto the screen. This month, we’ll show how those basic operations

of load and blit can be used to compose the entire game screen.

BY STEVEN GOODWIN

Moving Sprites on Screen

Load and Blit

60 September 2003 www.linux-magazine.com

Creating a Game: Screen DrawingPROGRAMMING

Figure 1: A sample tile set

Heinz Hagem
eier,visipix.com

Break on Through
Transparency is handled with a tech-
nique known as colour keying. For each
surface that requires transparency we
specify a single colour that, instead of
being blitted, will be ignored. There is no
specific colour that has to be used for
this purpose. Nor should there be. Since
all games are different, and every
graphic in the game will use a different
set of colours, you should choose a
colour key specific to you. However, one
carefully chosen colour will usually suf-
fice for all graphics in the game.

The best choices are very bright,
extreme, colours that no one would, gen-
erally, have a use for. In Explorer Dug we
shall use bright green. Fluorescent green,
even! With RGB components of 0, 255,0
it is highly unlikely that anyone would
‘accidentally’ use it as part of a genuine
graphic, even grass. If artists want a
bright green colour then 0, 254, 0 is just
as good, provided you have enough reso-



every blit from this surface will ignore all
pixels of that colour, treating them as
transparent. You can, of course, change
the colour key at any point during your
application, or turn it off entirely with:

SDL_SetColorKey(pGeneralTileGfxU
, 0, 0);

This makes it possible to replace the
colour key for specific graphics (or even
specific tile regions) in the game without
having to create a separate surface.
Unfortunately, SDL doesn’t provide an
easy way of retrieving the current colour

key, but you can reach directly into the
surface structure to get it as in Listing 3.

The old_colour_key value holds the
colour in a format that the surface

understands, and so does not need the
SDL_MapRGB function when we re-
apply the key to the surface.

Big in Japan
In addition to making a single colour
transparent, we sometimes want to make
the entire surface transparent. Not
totally, but partially. This will give the
image a ghost-like appearance, as we can
see the character, and the scenery
behind him. To do this we need to apply
an alpha channel. Special effects make
extensive use of alpha channels; explo-
sions, smoke and rain all use several
overlaid textures, each with its own
alpha component. We shall be using
alpha for a much simpler purpose: fad-
ing the player in at the start of the game,
to indicate that they are invincible.

The alpha component of a surface is
held as a single 8-bit value that ranges
from SDL_ALPHA_TRANSPARENT (0) to
SDL_ALPHA_OPAQUE (255). Any value
in-between is also valid, although 128 is
treated as a special case internally, and

so processes faster. It is possible to use
colour key surfaces and alpha surfaces at
the same time.

Like the colour key, SDL provides no
way of retrieving the alpha value of a
surface without referencing the variable
directly, as in Listing 4.

It is also possible to specify different
amounts of alpha for each individual
pixel, which allows us create a much
smoother edge around the characters.
However, this is quite tricky, since most
file formats do not include this informa-
tion. The GIMPs XCF does, but there’s
currently no library support for this for-
mat. Instead, we have to load two
images, one containing alpha informa-
tion and another containing graphic
(intensity) information, and join them
together manually by reading specific
pixels from the alpha surface, and com-
bining them with the intensity surface.
This, however, exceeds our current pur-
pose.

All Together Now
We are now ready to combine all three
parts of our game screen (backdrop,
level tiles, and dynamic objects). This
can be done in a couple of ways. Most
obviously, we could draw each of the
parts in turn, as in Listing 5.

However, to improve the game speed,
we shall make one additional stipula-
tion: the first tile (region 0) will never be
rendered to the game area. Ever. This is
because most of the tiled area is, in fact,
empty. It would waste a lot of CPU time
if most of the render code involved draw-
ing completely transparent blocks onto
the screen – and in games, we’re always
glad to discover speed optimisations.
The fastest way to draw something is not
to draw it at all, so we’ll sacrifice this
tiny amount of memory to the greater
god of speed.

We can further improve speed by com-
bining the backdrop and tiles into one
render function. This can be done very

61www.linux-magazine.com September 2003

PROGRAMMINGCreating a Game: Screen Drawing

void exDrawTile(SDL_Surface *pTile, int iRegion, int x, int y)
{
SDL_Rect src, dest;

src.x = (iRegion % iNumTileWidth) * iTileWidth;
src.y = (iRegion / iNumTileWidth) * iTileHeight;
src.w = iTileWidth;
src.h = iTileHeight;

dest.x = x;
dest.y = y;
dest.w = iTileWidth; /* Not actually needed,

since they're ignored */
dest.h = iTileHeight;

if (SDL_BlitSurface(pTile, &src, pScreen, &dest) < 0)
fprintf(stderr, "Blit error! %s", SDL_GetError());

}

Listing 1: Drawing a tile

int iNumTileHeight = 20, iNumTileHeight = 15;
/* fill a 640x480 screen */

int iTileWidth = 32, iTileHeight = 32;
for(ty=0; ty<iNumTileHeight; ty++)
for(tx=0; tx<iNumTileWidth; tx++)

exDrawTile(pTileSurface, map_data[tx + ty * iNumTileWidth],U
tx*iTileWidth ty*iTileHeight);

Listing 2: Loop

To conserve space in the magazine, the vari-
ables used in the code snippets are usually
shortened versions of the actual source
code.You will notice that the global variable
theGame, for example, is not present in the
most of listings given.

Missing the Game

Figure 2: On the left, Explorer Dug lacks an alpha.
On the right, he has an alpha of 128



tests. There are many variables to con-
sider with this type of optimisation, and
the only way to know which method will
execute faster is to try them both. During
development I found the “several small
ones” solution used less processing
(about 8%, according to top) and so
adopted it.

Using this idea, we can now write a
special routine to draw a level tile, which
may (or may not) copy the backdrop sur-
face in lieu of a tile (see Listing 6).

If there are tiles that involve trans-
parencies we will need to copy the
backdrop before drawing it, also. Deter-
mining which specific tiles have
transparent pixels is not difficult – but it
is slow. So we can either check for them
when the game starts, or stipulate to the
artists that only tiles numbered 8 and
above (for example) can have trans-
parencies. We shall choose the second
option.

Erase and Rewind
Now we are able to draw the screen once
– we need to be able to draw it several
times. Which will allow us to animate
some enemies moving around on top of
it. The code for this is very easy, but
must be done correctly as to prevent
unsightly artefacts on screen, or an
unnecessary burden on the CPU (see
Listing 7).

By ‘dynamic’ we actually mean two
things:
• Objects that move
• Objects that remain still, but animate
Repairing the screen involves removing
every dynamic object from it, so we’ve
left with the static background again.
This can be done in a couple of different
ways.

Firstly, we could ask each dynamic
object to remember what the screen
looked like before it drew itself, and then
redraw that block when we request a
repair. Although good, this involves a lot
of work on the part of each object, and

simply by saying that if we want to draw
the first tile (the completely transparent
one), we actually copy (i.e. blit) a por-
tion of the backdrop to the screen.
Otherwise, we draw the tile instead of
the backdrop. In this way, a screen with
300 tiles (20x15) will draw 300 tiles
worth of data. Whereas, in the original
suggestion, we’d be drawing 600. The
question of “is it quicker to draw one
large (backdrop) tile than several small
ones” I shall leave to the benchmarking

62 September 2003 www.linux-magazine.com

Creating a Game: Screen DrawingPROGRAMMING

Uint32 old_colour_key;

old_colour_key = pGeneralTileGfx->format->colorkey;
SDL_SetColorKey(pGeneralTileGfx,

SDL_SRCCOLORKEY,
SDL_MapRGB(pGeneralTileGfx->format, 0, 255, 0));

exDrawTile(pGeneralTileGfx, 12, xpos, ypos);

SDL_SetColorKey(pGeneralTileGfx,
SDL_SRCCOLORKEY,
old_colour_key);

Listing 3: Retrieving the colorkey

Uint8 old_alpha;
old_alpha = pPlayerGfx->format->alpha;
SDL_SetAlpha(pPlayerGfx, SDL_SRCALPHA, iAmountOfAlpha);
exDrawTile(pPlayerGfx, iFrame, xpos, ypos);
SDL_SetAlpha(pPlayerGfx, SDL_SRCALPHA, old_alpha);

Listing 4: Retrieving the alpha value

Figure 3: Stacking the surfaces

If the surface you are color keying has been
created with SDL_LoadBMP, chances are it
will use 24-bit colour.This means that the
green component has 8 bits of resolution,
254 and 255 will be different colors, and
there’s no problem. On the other hand, if the
surface is only 16-bit color, then green will
probably only occupy 5 or 6 bits.This loss of
precision means that 254 and 255 are the
same since they will both be represented as
31 internally (255>>3 == 254>>3).To be
absolutely safe you need to check the sur-
face format manually. Unfortunately this
test occurs in-game, but our graphics are
created off-line where this information is
unavailable. Realistically speaking, however,
as long as the green component of genuine
colors does not exceed 247 (which assumes
5 bits of precision), you should be safe.

Clarity of Color



doesn’t consider the possibilities that
two (or more) objects might overlap.
However, this can often be the most effi-
cient repair method.

We could also call exDrawStatic again.
This would work, but be very slow.
However, if the backdrop image were to
ever animate we would need to imple-
ment this solution.

The third option is to make use of the
exDrawLevelTile function, and redraw
the tile underneath every dynamic object
using existing code. This is a reasonable
trade-off.

tile_x = Enemy[obj].xpos / U

iTileWidth;
tile_y = Enemy[obj].ypos / U

iTileHeight;
exDrawLevelTile(tile_x, tile_y);

If the enemy extends over two or more
tiles, then each of these tiles will need to
be redrawn. Detecting this is fairly easy

since we’ve made sure that every tile 
in the game is the same size: 32x32. So,
if the position of the enemy isn’t on a 
32-pixel boundary (i.e. 0, 32, 64, 96, 128,
etc), it must overlap at least one more
tile. We can extend the above code to
include Listing 8.

For those in need of a C refresher, the
percent symbol (%) is the modulus oper-
ator, and returns the remainder from the
calculation (in our case xpos / Width).
So, if there is any remainder present we
must be overlapping the neighbouring
tile.

From here we can draw and update
the entire screen. We can also call it
repeatedly in a loop to move the enemies
around the screen.

Get The Message
SDL uses a paradigm known as event-dri-
ven programming. It works in the same
way as X Window, Microsoft Windows
and most forms of GUI programming. It

63www.linux-magazine.com September 2003

PROGRAMMINGCreating a Game: Screen Drawing

void exDrawStatic(void)
{
int tx, ty;
int obj;
/* Backdrop */
SDL_BlitSurface(pBackdrop, NULL, pScreen, NULL);
/* Tiles */
for(ty=0;ty<iNumTileHeight;ty++)
for(tx=0;tx<iNumTileWidth;tx++)
exDrawTile(pGeneralTileGfx, map_data[tx + ty *

iNumTileWidth], tx, ty);
/* Dynamic objects - for example, enemies */
for(obj=0;obj<iNumEnemies;obj++)
exDrawTile(pEnemyTileGfx, Enemy[obj].Graphic,

Enemy[obj].xpos, Enemy[obj].ypos);
}

Listing 5: Drawing the game screen
void exDrawLevelTile(int tx, int ty)
{
SDL_Rect src;
int iRegion;

iRegion = exGetTileRegion(tx, ty);

src.x = tx * iTileWidth;
src.y = ty * iTileHeight;
src.w = iTileWidth;
src.h = iTileHeight;

if (iRegion == 0 && pBackdrop)
SDL_BlitSurface(pBackdrop, &src, pScreen, &src);

if (iRegion)
exDrawTile(pGeneralTileGfx, iRegion, src.x,U 

src.y);
}

Listing 6: Drawing a level tile

exDrawStatic();

while(TheGame.bIsRunning)
{
exRepairScreen(); /* Remove all the old dynamic objects */
exUpdateLevel(); /* Update the dynamic objects */
exDrawDynamic(); /* Draw the dynamic objects back to the screen */

SDL_Update(pScreen, 0,0,0,0);
}

Listing 7: Screen draw

Under X11, we can achieve smooth graphics
because we never write directly to the
screen: we write to a separate buffer and
then SDL blits that to the screen. However,
some drivers do write directly to the screen.
If you’re using such a driver, and are unable
to draw everything quick enough, you will
see “tearing”.
This occurs because you are able to see half
of the last frame, and half of the current
frame at the same time. In these situations
you can employ double buffering.This tech-
nique involves two screen buffers, one that
gets drawn to the monitor, and one that we
draw our game into.This means we will
never be writing to the same frame that’s
being displayed.
Employing double buffering in SDL is very
easy. First, we need to set-up the video
mode:
pScreen = SDL_SetVideoMode(U
iWidth, iHeight, 16, U

SDL_HWSURFACE | SDL_DOUBLEBUF);
This adds two buffers to the screen surface,
a front buffer, and a back buffer.We can
write to this surface as normal with the
SDL_BlitSurface function, and SDL will only
write into one buffer – the back one.Then,
instead of updating the screen with
UpdateRect, we flip the screen buffers using:
SDL_Flip(pScreen);
This will make a copy the new image from
the back buffer to the front buffer, and we
can get ready to write the next frame. It is
the front buffer that is then displayed on
screen.

Double Buffer



is also somewhat akin to network pro-
gramming. In a ‘traditional’ console
application, the program starts, does
something, and exits. Sometimes, it
starts, waits for input, does something
else, and then exits. A lot of highly inter-
active software can not work in this
manner because of the ‘wait for input’
phase. Whilst we are waiting for input,
nothing else can happen, and if some
form of input occurs that we are not
expecting (like mouse input, whilst wait-
ing for a key press) we will be unable to
process it. In addition, the input routine
is said to be ‘blocking’, which prevents
anything else (like screen updates or ani-
mations) from happening until the
requested input has been received. Turn-
based games, like chess, work well with
blocking input, but action games like
ours don’t, so we have to use the event-
driven paradigm.

With event-driven programming,
instead of asking Linux for specific input
when we want it, our program sits in a
loop and continually asks “is there any
input, is there any input”.

Then, when the input arrives (of what-
ever type it may be), we process it and
continue with our loop. Once again ask-
ing, “is there any input, is there any
input”. This process is also known as
polling. Note that it is called event-dri-
ven, and not input-driven because Linux
can tell us about several things (like
whether the window has been resized or
closed), and not just mouse or keyboard
input. Under SDL, we are given events
when:
• There is some input from the key-

board, mouse, or joystick
• Our window is activated, or deacti-

vated
• Our window is resized (only occurs if

SetVideoMode was called with
SDL_VIDEORESIZE)

• Our window is closed, in which case
we must exit the event loop and close
the program

• Our window needs redrawing (in
which case we must call SDL_Update
Rect)

These events are queued up internally
and given to us when we ask for them,
one at a time, with the SDL_PollEvent
function.

This loop works. Badly! Why? Because
there is no concept of time. Firstly, with

64 September 2003 www.linux-magazine.com

Creating a game: Screen drawingPROGRAMMING

if (Enemy[obj].xpos % iTileWidth)
exDrawLevelTile(tile_x+1, tile_y);

if (Enemy[obj].ypos % iTileHeight)
exDrawLevelTile(tile_x, tile_y+1);

if ((Enemy[obj].xpos % iTileWidth) && (Enemy[obj].ypos % iTileHeight))
exDrawLevelTile(tile_x+1, tile_y+1);

Listing 8: Detecting tile boundaries

SDL_Event ev;

while(SDL_PollEvent(&ev) >= 0)
{
/* ev.type represents the type of message we've received */
/* Handle the message, and continue polling for more events */
if (ev.type == SDL_QUIT) /* We MUST handle this */
break;

/* Other message handlers go here */
}

Listing 9: A fairly nice event handler for Explorer Dug

SDL_Event ev;
Uint32 prev_time, curr_time;
Uint32 period, delta_time;
period = 1000/60; /* 16 milliseconds between frames */
TheGame.bIsRunning = TRUE;
prev_time = SDL_GetTicks();

while(SDL_PollEvent(&ev) >= 0 && TheGame.bIsRunning)
{
exUpdateInterface(&ev); /* process events for keyboard/stick etc */

do {
curr_time = SDL_GetTicks();
/* Check for 49 day wrap-around */
if (curr_time > prev_time)
delta_time = curr_time-prev_time;

else
delta_time = 0xffffffff - (prev_time-curr_time) + 1;
SDL_Delay(1);

}

while(SDL_PollEvent(&ev) >= 0 && delta_time < period);
prev_time = curr_time;

if (ev.type == SDL_QUIT)
break;
exRepairScreen();
exUpdateLevel();
exDrawDynamic();
SDL_UpdateRect(TheGame.pScreen, 0,0,0,0);
}

LIsting 10: A nicer event handler for Explorer Dug



such a tight loop, Linux has very little
time to process anything else. It’s the
modern equivalent of 10 GOTO 10! This
problem can be solved easily by intro-
ducing a short delay with the SDL_Delay
function we saw last month. Waiting for
a millisecond each time around the loop
doesn’t mean a lot to our game (the key-
board and mouse still feel responsive),
but to the OS it’s the difference between
working well, and grinding to a halt.

The second problem with time is that
the game will run as fast as it can. Fun-
nily enough, this isn’t what we want!
Games should run as fast as possible –
but no faster! If our monitor refreshes 
its display 70 times a second, then we

will get 70 differ-
ent images every
second. If our
monitor refreshes
at 85 Hz we will
get 85 images.
This is a natural
limit that occurs
because the SDL_
UpdateRect func-
tion waits until
the next monitor
redraw cycle be-
fore allowing our
game to continue.

To make this
timing consistent
we have to handle

it ourselves by introducing frame lock,
where the frame rate is capped to stop it
from exceeding a specific value. Com-
mercial 3D games (like Unreal) always
target 60 fps, as this is fairly close to the
refresh rate of a television or monitor
and makes the game look smooth.

60 fps means we must finish process-
ing each frame in under 16.666
milliseconds. That’s certainly possible to
achieve, so we shall frame lock our game
to 60fps.

If we succeed in producing the current
frame quicker than this, we’ll wait a
while (again, using the SDL_Delay func-
tion) until our 16.666 milliseconds have
expired, otherwise we’ll continue with

the next frame. Every time around our
event loop, however, we will always wait
for 1 ms, just to make sure the processor,
and other applications (such as server
daemons) get a chance to breath.

We can measure time with the
SDL_GetTicks function. It returns the
number of milliseconds since the pro-
gram was started, and can be placed
either side of the update-draw code to
work out how long the last frame took.
This should be in the order of millisec-
onds. 

The result of SDL_GetTicks is stored in
a Uint32 which means the timer will
wrap after around 4 billion milliseconds
– or 49 days. In our game, this will only
happen if you play for 49 days continu-
ously!

This is unlikely, and the (negative)
side effects are likely to be minimal. But
in massively multi-player online games
such as Ultima Online, this occurrence is
the norm, not the exception. So if you are
using this function you be aware of the
issues, and take suitable steps to avoid
the problem, as we do in Listing 10.

We now have an event loop in place,
and are ready to process any event we
receive, be it from the mouse, the key-
board or even a joystick. But as for the
full scope of what those events are, and,
more importantly, how to use them to
control our game, will have to wait until
next month… ■

PROGRAMMINGCreating a game: Screen drawing

Figure 4: Complete game image

For more information see:
www.linux-magazine.com/Backissues

SELLING OUT FAST!


