
connection by spoofing TCP resets. Hog-
wash can be configured to monitor
traffic on multiple interfaces.

In Scrub mode, Hogwash acts as a
packet filter. It spoofs TCP resets, drops
packets or modifies them to effectively
repel any attack. Hogwash can use up to
16 network adapters and can forward
packets between these adapters, if
required, working as a bridge rather than
a router. 

The software runs transparently in
promiscuous mode at link level. The
sysadmin can even disable the operating
system’s IP stack, and will need to dis-

able IP forwarding, as Hogwash assumes
responsibility for this.

In the experimental Bait-n-Switch
mode, Hogwash will protect production
systems without repelling attacks.
Instead, it forwards suspicious connec-
tions to a honeypot to allow for closer
analysis: an attack on the honeypot will
not impact the network.

Installation
Hogwash is quite simple to install. After
downloading and unpacking the sources,
follow the typical configure-make
pattern:

Hogwash [1,7] is an IDS that
implements this functionality.
The “History” boxout shows the

development of this Gateway-IDS, and
the remainder of this article will be dedi-
cated to installing, configuring, and
operating Hogwash.

A Flexible Packet Scrubber
Hogwash supports three distinct modes:
IDS, Scrubber and Bait-n-Switch.

In IDS mode, Hogwash monitors net-
work traffic and alerts the admin in case
of malevolent packets. Although it can-
not intercept packets, it can cancel the

Firewalling and IDS (Intrusion Detection Systems) are 

actually two distinct areas: the former allowing only 

specific packets and connections, and the latter recognizing

potential attacks and informing the admin. As an IDS merely

recognizes known attack patterns, it is up to the admin to

close down any security gaps. But there are 

scenarios where this is impossible, and this is where IDS sys-

tems that clamp down on ongoing attacks come into their

own. BY RALF SPENNEBERG

36 September 2003 www.linux-magazine.com

01 <system>
02 Name=Hogwash IDS Gateway
03 ID=1001
04 Threads=1
05 </system>
06
07 <interface eth0>
08 Type=linux_raw
09 Proto=Ethernet
10 Role=External
11 </interface>
12
13 <interface eth1>
14 Type=linux_raw
15 Proto=Ethernet

16 Role=Internal
17 </interface>
18
19 <IPList WebServers>
20 5.0.0.1/32
21 </list>
22
23 <action log>
24 response=alert console
25 response=alert file(/var/log/

hogwash/hogwash.alert)
26 response=dump

packet(/var/log/hogwash/
packet.log)

27 </action>

28
29 <action drop>
30 response=alert console
31 response=alert

file(hogwash.alert)
32 response=dump

packet(packet.log)
33 response=drop
34 </action>
35
36 <routing>
37 MacFilter(eth0, eth1)
38 </routing>

Listing 1: Configuration file

HogwashREVIEWS

Hogwash, a Snort-Based Gateway-IDS

Scrubbing the Network



./configure
make

Hogwash runs on any Linux
distribution, although it
makes sense to remove the
operating system’s IP stack
(see Figure 1) to harden the
host against attacks. Of
course, this prevents the
administrator from using
TCP/IP to access the Hog-
wash host, and means
resorting to administering the
host locally.

Scrubber
Configuration
A configuration file and a ruleset are
used to specify the role Hogwash plays.
The package contains sample configura-
tion files called stock.config and
test.config and a number of sample
rulesets:

general.rules
jason.rules
nikto.rules
nimda.rules
stock.rules
test.rules
x11.rules

The stock.rules ruleset also loads four
files: nikto.rules, x11.rules, nimda.rules,
and general.rules.

To configure the host, the administra-
tor must first define the local system, the
network interfaces, IP addresses,
actions, and routing options. Listing 1
shows a sample file for the configuration
shown in Figure 2. First, Hogwash is
assigned a name and ID in the <sys-
tem> area. The Threads statement
specifies whether Hogwash will be
launched in single-threaded mode (0), or
assign a thread to each network card.
Note that multi-threaded mode offers far
superior performance. The network

adapters are configured in the next step.
Hogwash can use a variety of communi-
cation modes to talk to its network
interfaces: Linux (Type=linux_raw),
OpenBSD (obsd_bpf), MacOS X
(osx_bpf), and Solaris (solaris_dlpi). The
system can also read network packages
from a tcpdump file in offline mode
(Type=tcpdump). Hogwash supports
only the Ethernet protocol, Proto=Ether-
net and will not run on Token-Ring
networks. The Role=… parameter is
optional and is used for routing and ARP.

To save time later when defining the
ruleset, it makes sense to define IP
address lists in the configuration file.
The lists can contain individual IP
addresses or complete networks in CIDR
notation (Classless Internet Domain
Routing). You can additionally define the
actions Hogwash should perform, if an
attack is detected:
• response=alert console – display the

packet on the console.
• response=alert file(filename) – write

the alert to a file.
• response=dump packet(Filename) –

store the packet for later analysis.
If you want Hogwash to drop the packet,
and thus protect a machine, you should
stipulate response= drop. Rules will

later access groups of actions
to provide for appropriate
responses.

If you are using Hogwash
as a Gateway-IDS (also
known as an Intrusion Pre-
vention System), it will need
perform packet forwarding.
Hogwash refers to this as
routing, although it is actu-
ally bridging. In addition to a
simple bridge mode, SBridge,
Hogwash also provides a
flood protection variant, Mac-
Filter. The system can only
forward specific IP addresses
via individual interfaces,
depending on the source IP

SIP, or destination IP DIP. The bridge
function facilitates deployment, as Hog-
wash will run immediately on launching
without any additional IP configuration.
The Gateway-IDS is completely trans-
parent at IP level.

Strictly by the Rules
The ruleset shown in Listing 2 comprises
a selection of sample rules. Each entry
can handle any given aspect of the
packet: the network interface, Ethernet
type (IP, ARP, and so on), IP addresses,
IP protocol, ICMP code and type, UDP
and TCP ports, and TCP packet content.
You can specify messages and actions as
a response to the packet: When defining
a message (message=), the admin can
use variables to access vital packet
attributes and the current date. action
refers to the actions defined in the
configuration file (see Listing 1).

Listing 2 shows two simple sample
rules. The first rule checks whether a
TCP packet has been sent to port 80 and
contains the chunked string. This is
indicative of an attack on the Apache
chunked encoding memory corruption
vulnerability [4]. The second rule checks
for ICMP echo requests. In this case,
Hogwash will simply log the packet.

37www.linux-magazine.com September 2003

Figure 1: The kernel does not require an IP stack, if you use Hogwash. You can
completely disable the stack allowing Hogwash to provide packet analysis
capabilities

Figure 2: Hogwash typically assumes the role of a bridge: neither routers, nor
webservers will notice the additional hurdle in this scenario. The filter will
block a connection if an attack is detected

Internet Web ServerHogwashRouter

Figure 3: In Bait-n-Switch mode Hogwash protects a production server and
re-routes attacks to the honeypot. This allows the admin to monitor the
attacker at leisure without endangering production systems

Internet HogwashRouter Web Server

Honeypot

REVIEWSHogwash



as shown in Figure 3. Listing 3 shows an
excerpt from the required script.

The admin first uses IP lists to specify
those systems that Hogwash should
always allow to pass through to the
server <IPList green>, and those that
will be sent off to the honeypot <IPList
red>. After this step, the admin selects
Route as the response to the rules, to for-
ward the connection to the honeypot.
The action provides a timeout and the IP
addresses that Hogwash should never
forward to the honeypot (response=
bns(Timeout,address list)). The next
step is to define which network interface
is responsible for what:

bns(Internet,Production,U
Honeypot,red_list)

The honyepot configuration should be
identical to that of the production server.
Most importantly, the IP addresses must
match. The data provided by the honey-
pot should be identical to that on the
genuine server to confuse the attacker.

Conclusion
Hogwash is an easy-to-install, invisible
Gateway-IDS that operates on Layer 2
and is thus invisible to IP traffic – attack-
ers will be unable to use traceroute to
recognize the Hogwash host. The operat-
ing system in use does not even require
an IP stack (see Figure 1). Hogwash is
suitable for use as a central component
in a Bait-n-Switch system that will dis-
tract attackers away from production
systems to a honeypot, allowing the

admin user to monitor the attacker’s
nefarious activities and the attack
method offline at a later time.

Snort-Inline [5] is a similar Gateway-
IDS – although it is harder to set up. It
uses Lennert Buytenhek’s bridging patch
to forward packets via the Iptables
QUEUE target to Snort-Inline. The soft-
ware then tests the packets, only
permitting harmless packets to pass. We
will be looking at Snort-Inline in a subse-
quent issue. ■

The extremely comfortable rule syntax
allows you to define arbitrary rules. A
compatibility mode for Snort rule syntax
is planned for future Hogwash versions.
This would allow you to import Snort
rules directly.

Bait-n-Switch
Bait-n-Switch mode allows you to deploy
a honeypot to protect a production
server. The Hogwash host forwards any
traffic between the network interface,
the honeypot, and the production server,

38 September 2003 www.linux-magazine.com

Way back in 1996 Jed Haile and Jason Larson
had a problem: one of their webservers had
a security hole, but it was tightly integrated
with an additional software program that
refused to run after they applied a security
patch.Their solution was to write the
predecessor to Hogwash, called Scrub.
The program filtered precisely those packets
used for the attack on the webserver from
the network traffic, allowing the admins to
carry on running their webserver until they
could port it to a new system.
Three years later the authors discovered
Snort [2].They were fascinated by its simple
structure and easily intelligible rule syntax
[3].They added the internal Snort engine 
to Scrub and renamed their program, calling

it Snortscrub.They finally renamed the
product once more to Hogwash, intending
to promote commercial use of the package.
A period of about two years, where
development of the free version flagged,
then followed. All the more so, since a whole
range of new features was added to Snort in
this period. But the Snort detection engine
demonstrated some weaknesses.

So, Jason Larson (aka Anon Poet), decided to
re-work the original Scrub detection engine
and to revive it as H2. H2 has a compatibility
mode that understands Snort rules.

Although work on compatibility mode is 
still in progress, the current version Devel-0.5
actually uses H2.

[1] Hogwash:
http://hogwash.sourceforge.net

[2] Snort: http://www.snort.org
[3] Ralf Hildebrand,“Cain and Abel – Snort

and Nmap, two sides of the same coin”:
Linux Magazine Issue 4, January 2001,
Page 46

[4] Apache vulnerability: http://www.
securityfocus.com/bid/5033/exploit/

[5] Snort-Inline http://www.snort.org/dl/
contrib/patches/inline/

[7] Securing an unpatchable Webserver –
HogWash!: http://www.securityfocus.
com/infocus/1208

INFO

01 <rule>
02 ip dst(WebServers)
03 tcp dst(80)
04 tcp nocase(chunked)
05 message=%sip-%dip Apache

Chunked Encoding Attack
Bugtraq 5033

06 action=drop
07 </rule>
08
09 <rule>
10 icmp type(8)
11 message=%sip-%dip icmp echo

request
12 action=log
13 </rule>

Listing 2: Rule file

01 <IPList green>
02 x.x.x.x/24
03 </list>
04
05 <IPList red>
06 y.y.y.y/32
07 </list
08
09 <Action Route>
10 response=alert console
11 response=alert file(

/var/log/hogwash/hogwash.
alert)

12 response=dump packet(
/var/log/hogwash/packet.log)

13 response=bns(3600,green)
14 </Action>
15
16 <routing>
17 bns(eth0,eth1,eth2,red)
18 </routing>

Listing 3:
Bait-n-Switch Mode

Ralf Spenneberg is a
freelance Unix/Linux
trainer and author.
Last year saw the
release of his first
book:“Intrusion
Detection Systems for
Linux Servers”. Ralf
has also developed various training
materials.

TH
E A

UT
HO

R

Snort’s History

HogwashREVIEWS


