
Figure 1 juxtaposes SISD and SIMD.
Unfortunately, SIMD only processors
were not flexible enough to handle SISD
tasks quickly and without too heavy an
impact on system resources. A combina-
tion of SISD and SIMD is ideally suited to
handling both simple tasks and mass
data quickly and effectively.

There is nothing new about the way
SIMD works. Many other processor archi-
tectures, such as MIPS and SPARC, for
example, also use this technique. Even
gaming consoles like the Sony Play-
station 2 with its Emotion Engine use
SIMD.

Well-known: SIMD in the
GPU
SIMD units were introduced to run-of-
the-mill PCs years ago – to the video
adapter (GPU, Graphics Processing Unit)
to be more precise. SIMD is ideally suited
to handling graphic data. The GPU often

needs to perform operations, such as
geometric transformations, on large
amounts of the same type of data
(vertices in this case).

There are numerous technologies that
utilize hardware implementations of
SIMD operations. This article uses SIMD
to refer to the variant provided by newer
x86 processors. The “SIMD Extensions in
IA32 Processors” provides details on the
common techniques MMX, SSE, SSE2,
and 3DNow.

Modern Processor Extensions
To run an SIMD instruction, a program
needs to load the data adjacently into a
register. MMX (Multimedia Extension)
uses the FPU (Floating Point Unit) to do
this, using 64 bits of each of the eight
FPU registers (each of which provides 80
bits), and assigning the aliases mm0
through mm7. The disadvantage is that
the programmer needs to specify

Current IA32 family processors are
quick enough for scientific com-
putations and other tasks that

require large amounts of CPU power,
such as multimedia applications. How-
ever, this only applied to integer
operations until a short while ago; other
processor families performed floating
point operations a lot more quickly [1].

Intel adopted a new approach with the
Pentium MMX processor: SIMD exten-
sions (Single Instruction, Multiple Data)
are designed to considerably accelerate
integer and floating point operations in
comparison to previous architectures, as
a multiple computations can be per-
formed using a single instruction.

Instructions with Wide-
Ranging Effects
Multimedia applications are where SIMD
architectures shine. Instead of processing
various data pieces of different types, the
processor is required to handle streams
of the same data type using the same
instruction. 

Thus, an SIMD instruction will handle
multiple data of the same type at the
same time. This contrasts with the SISD
technique (Single Instruction, Single
Data) used by previous processors. 

Intel’s x86 processors have been SIMD-capable since the introduction of the

Pentium MMX: SIMD (Single Instruction, Multiple Data) means that the CPU

can perform four simultaneous computations. Being familiar with and

applying appropriate optimization techniques can provide considerable

performance benefits to your programs. BY STEPHAN SIEMEN

Optimizing Programs for SSE2-capable Processors

Go Faster

66 September 2003 www.linux-magazine.com

Stephan Siemen works as a scientist at
the University of Essex (UK) where he
is involved with creating software for
3D representation of weather systems
and teaches computer graphics and
programming.
Additional information on this 
subject is available from his website:
http://prswww.essex.ac.uk/
stephan/3D/.

TH
E A

UT
HO

R

SSE2 ProcessorsPROGRAMMING

Figure 1: An SISD processor (left) handles a single data field per instruction, whereas an SIMD processor
(right) processes multiple units of data simultaneously
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whether a code section should perform
FPU or MMX operations.

Intel explicitly advises against mixing
FPU and MMX computations. For one
thing both operation types affect the FPU
status flags, and for another mixing ops
can severely impact code executions
speeds. The Pentium III uses a
workaround involving eight new regis-
ters. These registers provide 128 bits (16
bytes) of memory and are referenced as
xmm0 through xmm7. The Pentium 4
also provides these SSE registers.

SIMD programs need to pay attention
to how they organize the data. To allow
the processor to efficiently load data into
its SSE2 registers, the data need to
occupy contiguous memory blocks that
start and end on 16 byte borders. This is
often referred to as data alignment. If the
data is not aligned, the processor will
need a lot of time to perform alignment
at runtime.

Data Vector Composition
The data processed in a single step by an
SIMD command build a vector. The
number of elements in the vector
depends on the size of the registers. In
the case of MMX, each register is 64 bits;
this extends to 128 bits for SSE and SSE2;
thus an SSE2 vector can contain two 64-
bit elements or sixteen 8-bit values,
whereas an MMX vector can only handle
a single 64 bit value or eight 8-bit
elements.

Figure 2 shows the vector composition
for MMX, SSE, and SSE2. The class
names used by Intel are shown on the
right. The figure shows that SSE2 has an

advantage over MMX, particularly with
regard to integer arithmetic: it can han-
dle twice the amount of numbers at a
single step and additionally leaves the
x87 FPU free for other tasks. Thus,
programs should avoid MMX and opt for
SSE2 if at all possible.

There are two variants of every integer
vector: signed and unsigned. The C++
class names indicate this by adding an s
or an u after the first letter; thus I64vec2
becomes Is64vec2 (signed) or Iu64vec2

67www.linux-magazine.com September 2003

(unsigned). Floating point vectors
always require a sign.

SSE2 on Linux
New processor extensions need operat-
ing system and compiler support, if
applications are to leverage them. Oper-
ating system support is vital as the dialog
between processes involves storing the
state of all registers, and this in turn
means that the SSE and SSE2 registers
must be known. The newer Linux ker-
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Processor MMX SSE SSE2 3Dnow
Intel Pentium and older Pentium MMX, Pentium II, 3
Celeron Pentium III, Celeron II 3 3
Pentium 4 3 3 3
AMD K6 3
K6 II/III, Athlon, Duron 3 3
Athlon 4, Athlon XP 3 3 3

Table 1: SIMD-aware x86 Processors

MMX: Intel supplied the first SIMD extension, known as the Multimedia Extension,
or MMX for short, in the form of the Pentium MMX way back in 1997.These exten-
sions use new commands to perform two, four, or even eight integer instructions in
parallel. Despite a large-scale advertising campaign, it took quite a while for develop-
ers to start applying themselves to the new extensions. But MMX had no effect on
slower floating point computations.
SSE: When Intel introduced the Pentium III in 1999 it added the Streaming SIMD
Extension (SSE) to MMX. Besides 70 new instructions the processor was give eight
additional registers to allow it to perform single precision floating point computa-
tions using SIMD techniques.
SSE2: The Pentium 4 processor (November 2000) saw the introduction of the
Streaming SIMD Extension 2 (SSE2) to Intel processors.This extension accelerates
operations with double precision integers and floating points.
3DNow: Intel competitor AMD has developed its own SIMD extensions, referred to as
3DNow. 3DNow adds (single precision) floating point capabilities to MMX, using new
commands to do so.The manufacturer has committed itself to supporting this
instruction set in future, but seems to be heading in the direction of SSE and SSE2.

IA32 Processor SIMD Extensions

01 // Compute scalar product in
C:

02 float scalarproduct(float x[],
float y[])

03 {
04 return x[0]*y[0] + x[1]*y[1]

+ x[2]*y[2] + x[3]*y[3];
05 }
06
07 // Compute scalar product in

Assembler:
08 float scalarproductAssembler(

float x[], float y[])
09 {
10 vector tmp;

11 asm(
12 "movl %1, %%esi;"
13 "movl %2, %%edi;"
14 "movaps (%%esi), %%xmm0;"
15 "mulps (%%edi), %%xmm0;"
16 "movaps %%xmm0, %0;"
17 :"=g"(tmp) /*

Output */
18 :"r"(x),"r"(y) /* Input

*/
19 );
20 return tmp.f[0] + tmp.f[1] +

tmp.f[2] + tmp.f[3];
21 }

Listing 1: C and Assembler

Option Meaning
ICC 7.1

-vec_report0 through -vec_report3 Issues a status report on the 
automatic vectorizer (Default: 1)

-xi, -xM, -xK, -xW Enables the automatic vectorizer 
(i = Pentium Pro and Pentium II,
M = MMX, K = SSE,W = SSE2)

-axi, -axM, -axK, -axW Enables the automatic vectorizer,
but also creates conventional code 
for non-SIMD processors

GCC 3
-mfpmath=Unit Specifies the floating point arith-

metic the program will use; units 
can be 387, sse or sse,387

-mmmx, -msse, -msse2 Allows the programmer to use the 
integrated SIMD function 

(Version 3.3 or later), -m3dnow [5] in GCC

Table 2: Compiler SIMD Options



scalarproduct() is written entirely in C,
whereas scalarproductAssembler() con-
tains SSE Assembler instructions. The
example shows the advantages and dis-
advantages of SIMD commands: the
Assembler variant uses a single multipli-
cation in contrast to four in the C code,
but needs more commands to store the

result in a variable. Both solutions com-
pute four additions.

Assembler programming also has the
disadvantage that the code quickly
becomes illegible, and that makes later
revisions difficult. However, if you are
interested in more detail on the SSE2
Assembler instruction set for the Pen-
tium 4, useful documentation is
available from [3]. If you are a bit chary
of Assembler, Intel may provide the
answer: the processor and compiler
manufacturer provides so-called intrin-
sics [4], compiling SIMD Assembler
instructions to C type functions, which
can be applied directly to C and C++
code. The programmer does not need to
take care of register specifics, as the
intrinsics will accept parameters just like
normal functions.

Intrinsics Provide Legible
Code
You will need to include one of the fol-
lowing header files to use intrinsics:
• mmintrin.h for MMX
• xmmintrin.h for SSE
• emmintrin.h for SSE2
In the case of SSE, this will add the
__m128 _mm_mul_ps(_ _m128 a,
__m128 b) command, for example. The
command calls the Assembler command
MULPS, which multiplies multiple fields

nels (specifically the 2.4 series) provide
the required support: cat /proc/cpuinfo
shows the CPU capabilities supported by
a system, as you can see in Figure 3.

Manual Code Optimization
Developers typically need to negotiate a
few obstacles before they can leverage
the capabilities provided by a CPU in
their own programs. The problem with C
and C++ is that neither language speci-
fies standardized SIMD functions. Thus,
SSE2-aware code depends to a greater
extent on the capabilities provided by
the compiler you are using. However,
instead of relying on compiler function-
ality, developers can write performance
critical code in Assembler.

MMX, SSE, and SSE2 all have their
own Assembler instructions, and it is
important to distinguish between scalar
and packed instructions. Scalar instruc-
tions resemble conventional Assembler
instructions, modifying only the least sig-
nificant element of a vector. In contrast
to this, packed instructions simultane-
ously apply the operation to each
element. Figure 4 shows an example.

The Scalar Product of Two
Vectors
Listing 1 shows two functions that calcu-
late the scalar product of two vectors.
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Figure 2: The MMX, SSE, and SSE2 data vectors use different data types. For each vector in Intel’s class
library, the number, size and type of the elements are shown on the left, and the class name is shown on
the right
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01 // Include SIMD Header
02 #ifdef __INTEL_COMPILER
03 # include <fvec.h> // also

contains xmmintrin.h
04 #else
05 # include <xmmintrin.h>
06 #endif
07
08 typedef union{
09 __m128 m; float f[4];
10 } vector;
11
12 // Compute scalar product

using Intrisics:
13 float scalarproductIntrinsics 

(float x[], float y[])
14 {
15 __m128 *vecX = (__m128 *)x;
16 __m128 *vecY = (__m128 *)y;
17 vector tmp;
18
19 tmp.m = _mm_mul_ps(vecX[0],

vecY[0]);
20
21 return tmp.f[0] + tmp.f[1] +

tmp.f[2] + tmp.f[3];
22 }
23
24 // Compute scalar product with

F32vec4:
25 float scalarproductSSE(float

x[], float y[])
26 {
27 F32vec4 *vecX =

(F32vec4 *)x;
28 F32vec4 *vecY =

(F32vec4 *)y;
29 F32vec4 tmp;
30
31 tmp = vecX[0] * vecY[0];
32
33 return tmp[0] + tmp[1] +

tmp[2] + tmp[3];
34 }

Listing 2: Intrinsics and C++



in a single step (MUL), that is, it per-
forms a packed operation (P, packed). It
interprets its operands as single preci-
sion floating points (S).

Developers can also use GCC to add
SIMD commands without resorting to
Assembler [5]; the instruction set is
enabled by stipulating the appropriate
compiler option (see Table 2). Newer
GCC versions also support Intel’s intrin-
sics functions.

Automatic Optimization
Assembler, intrinsics and GCC exten-
sions all have one major disadvantage: a
program’s source code is not easily
ported to other systems or even other
compilers. But you can typically avoid
performing manual SIMD optimization,
as many compilers automatically create
machine code to leverage the SIMD capa-
bilities of the current processor (see
Table 2).

Developers using Intel compilers
should use the -xkW option to enable the
automatic vectorizer, which converts
commands to SIMD instructions. How-
ever, not every piece of code lend itself to
automation. The Intel compiler only vec-
torizes loops, and only does so provided
they do not access elements of the same
stream. ICC cannot handle the following
loop:

for(i=1;i<1000;i++)
x[i] = x[i-1] + c[i];

At each step, the computation has to
wait for the results of the previous exe-
cution, and this prevents the compiler
from performing multiple loops within a
single step. The -vec_report3 option tells
the developer how well specific code sec-
tions will respond to vectorization.

Union Facilitates Access to
SIMD Fields
Contiguous data storage within a vector
is vital to SIMD operations. A 128-bit
vector is defined as the __m128 datatype
in the SSE Intrinsics headers. The type is
always aligned, and its structure is
known. 

Thus a union is well-suited to assign-
ing values to its elements. The following
code shows how to do this for four 32-Bit
float datatypes:

union {
__m128 m128;
float fElement[4];

} vector;

Intel provides a number of vector classes
to save developers the effort of creating
their own. Figure 2 shows these types
and the appropriate header files.

The program in Listing 2 shows how to
compute the scalar product from Listing
1 using intrinsics functions or Intel’s
SIMD classes (C++). The first function
(line 13) uses intrinsics. It first converts
the data to __m128. The type definition
in line 8 facilitates access to the individ-
ual elements of the vector with the
temporary results tmp.
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Figure 3: The cat /proc/cpuinfo command the processor characteris-
tics supported by your kernel. The flags line indicates that this
Linux version is aware of MMX, SSE, and SSE2 (Kernel 2.4.20)

Figure 4: The difference between scalar and packed multiplication:
The first multiplies only two operands (blue arrow), the second handles every element
in the data vectors
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»mulps xmm1, xmm2«»mulss xmm1, xmm2«
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01 [...]
02 // Matrix vector

multiplication in C
03
04 // Matrix:
05 float matrix[4][4]={
06 { 2.5, 3.4, 7.9, 1.2 },
07 { 1.2, 7.7, 3.7, 0.5 },
08 { 3.1, 8.2, 7.1, 3.6 },
09 { 7.8, 0.4, 1.2, 5.2 }
10 };
11
12 // Vector:
13 float vector[4]={ 1.0, 1.0,

1.0, 1.0 };
14
15 // Compute result:
16 float result[4]={0};
17 int i,j;
18 for (i=0;i<4;i++)
19 {
20 result[i]=0;
21 for(j=0;j<4;j++)
22 {
23 result[i] +=

matrix[i][j] * vector[j];
24 }
25 }
26 }

Listing 3: Multiplication in C

Compiler call Time (Listing 3, pure C) Time (Listing 4, Intrinsics)
g++ -O2 0,8 s –
g++ -O2 -msse -mfpmath=sse 0,82 s 0,09 s
icc -O2 0,05 s 0,01 s
icc -O2 -axW 0,23 s 0,01 s

Table 3: Runtimes for Matrix Multiplication



Table 3 shows the results: the SSE imple-
mentation (right column) is a lot quicker
than standard code. Unfortunately, GCC
cannot compile SSE code without SSE
options, thus it is impossible to assess the
performance without the additional opti-
mizations. Looking at the values for the
Intel compiler indicates that the normal
code runs a lot slower after applying the
vectorizer. Automatic optimization has
failed here, so manual optimization is
well worth while.

The processor manufacturers, Intel [6]
and AMD [7], are a useful source for
more details, as is the documentation for
the GCC [5] and ICC compilers. Intel has
published a number of PDF documents
on the subject of code optimization with
its own compilers.

Conclusion and Lookout
Modern compilers like GCC and ICC pro-
vide developers with a number of
techniques for leveraging the SIMD
extensions of newer x86 processors.
These extensions can considerably

improve execution speeds, and do not
necessarily require in-depth knowledge
of Assembler programming on the part
of the developer.

To make your programs future-proof,
you should investigate the SIMD exten-
sions. In addition to the 32-bit
processors, they provide support for Intel
and AMD’s 64-bit CPU SSE extensions. ■

The second function (line 25) uses the
SSE class F32vec4 to create a vector for
SIMD computations. The vector com-
prises four elements (vec4), and each
element contains a single precision float-
ing point number (F32, 32 bit float). 

The practical thing about these classes
is the fact that developers do not need to
learn new commands to perform simple
operations: C++ allows you to overload
operators, thus the multiplication in line
31 can use familiar notation.

The Matrix
The performance boost provide by SIMD
extensions is easily demonstrated using
a matrix-vector multiplication example.
The standard C code for this is shown in
Listing 3.

Listing 4 shows the same computation
using SSE intrinsics. The intrinsics
variant uses union constructs to access
the float array or __m128 vector. The
code uses _mm_add_ps to add two
vectors, and _mm_set_ps1 sets all four
elements in the vector to a value.
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01 [...]
02 // Matrix vector multiplication using SSE

Intrinsics code.
03
04 // Assign matrix memory:
05 union {
06 __m128 m128[4]; // by column
07 float f[4][4];
08 } matrix;
09
10 // Memory for vector and result:
11 union {
12 __m128 m128;
13 float f[4];
14 } vector, result;
15
16 // Initialize matrix:
17 matrix.m128[3] = _mm_set_ps( 2.5, 1.2, 3.1, 7.8

); // 1. Column
18 matrix.m128[2] = _mm_set_ps( 3.4, 7.7, 8.2, 0.4

); // 2. Column
19 matrix.m128[1] = _mm_set_ps( 7.9, 3.7, 7.1, 1.2

); // 3. Column
20 matrix.m128[0] = _mm_set_ps( 1.2, 0.5, 3.6, 5.2

); // 4. Column
21
22 // Initialize vector:
23 vector.m128 = _mm_set_ps(1.0,1.0,1.0,1.0);
24 result.m128 = _mm_setzero_ps();
25

26 // Compute multiplication:
27 __m128 tmp_multiplier;
28 __m128 tmp_column1;
29 __m128 tmp_column2;
30
31 tmp_multiplier = _mm_set_ps1(vector.f[0]);
32 tmp_column1 = _mm_mul_ps(matrix.m128[0],

tmp_multiplier);
33
34 tmp_multiplier = _mm_set_ps1(vector.f[1]);
35 tmp_column2 = _mm_mul_ps(matrix.m128[1],

tmp_multiplier);
36 tmp_column1 = _mm_add_ps(tmp_column1,

tmp_column2);
37
38 tmp_multiplier = _mm_set_ps1(vector.f[2]);
39 tmp_column2 = _mm_mul_ps(matrix.m128[2],

tmp_multiplier);
40 tmp_column1 = _mm_add_ps(tmp_column1,

tmp_column2);
41
42 tmp_multiplier = _mm_set_ps1(vector.f[3]);
43 tmp_column2 = _mm_mul_ps(matrix.m128[3],

tmp_multiplier);
44 result.m128 = _mm_add_ps(tmp_column1,

tmp_column2);
45
46 result.m128 = _mm_loadr_ps(result.f);
47 }

Listing 4: SSE Intrinsics
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