
and famine that we find in the world at
large.

Anyway, the program we will be look-
ing at in this article, HeyHeyWickie [2],
which incidentally was named after a
friendly Scandinavian cartoon character
(Vicky the Viking), is remarkable in one
respect: Its capability to execute arbitrary

source code demonstrates unprece-
dented flexibility, which can be an issue
in itself, but we will get back to that sub-
ject later.

Templates
The reason for this flexibility is
the underlying template processor.

Nowadays, processors of this
kind are two-a-penny. What
they all have in common is the
fact that they accept text input,
recognize the templates in that
input, and replace them with
different content before out-
putting a typically larger file
generated in the process. Re-
placements typically involve
expanding simple strings or iter-
ating against some kind of data
described in the template.

Processors not only use differ-
ent APIs, but often define a kind
of mini-language for their tem-
plates, as if there weren’t
already an over-abundance of
artificial, rather than natural,
languages today. Some of these
template processors are so
closely knit-in to the (typically
Web-based) application for
which they were originally
developed that they will not
work without it.

This can’t be said of EmPy
[3], however, as it uses the same
universal programming lan-
guage in which it was written,

In the world of Open Source software,
some things seem to happen more-
or-less of their own volition. Or how

else would you explain the fact that
an unsuspecting developer, sitting in
front of his computer, might download
the latest version of a software library,
and suddenly discover that he had devel-
oped yet another version of a
common tool, before even
thinking about its possible use-
fulness?.

This is exactly what happened
in the case of a WikiWiki
program, that automagically
appeared on my computer while
I was pondering the issue of a
useful application for the
“EmPy” template processor.

Now, you may well ask
whether the world really needs
yet another WikiWiki program,
or even another template pro-
cessor for that matter. Wouldn’t
it be more useful to join the
fight against ignorance and
famine all over the world?

Admittedly, WikiWikis are
simpler to manage, but a speci-
men with a four KByte footprint
does make you wonder. Of
course, this is only the core
of the WikiWiki, but it might
at least give you a chance
to understand how a Wiki
works; and that can’t be said
of most existing Wikis, not to
mention ignorance, intolerance

Python fans will appreciate EmPy, a well designed template processor for

web-based or other development. Its powerful features allowed the author

to program a Wiki software project that had only a four KByte footprint. The

small size allows us more easily to follow just what is going on and also aids

in quickly experimenting with it.

BY DINU GHERMAN

EmPy Template for Do-It-Yourself Wiki

Happy-go-Wiki

20 October 2003 www.linux-magazine.com

EmPy WikiCOVER STORY

01 @{
02 import wickie4K
03 from os.path import getmtime
04 files = wickie4K.getWikiPaths()
05 files = map(lambda f:(getmtime(f), f), files)
06 files.sort()
07 files.reverse()
08 files = map(lambda f:f[1], files)
09 files = map(wickie4K.wikiPath2name, files)
10 files = map(lambda f:f[0], files)
11 }
12
13 This is currently a list of all pages with
14 the most recently changed ones at the top:
15
16 @[for f in files]
17 - @wickie4K.wikiName2link(f)
18 @[end for]

Listing 1: “RecentChanges” Page

01 @{
02 import random, wickie4K
03 path = wickie4K.WIKI_DIR + "quotes.text"
04 quotes = open(path).read().split('\n')
05 print "*%s*" % random.choice(quotes)
06 }

Listing 2: Code Snippet for Quotes:

Python [4]. The processor was designed
without a specific application in mind
and stands out from the crowd by virtue
of its comprehensiveness and versatility.
It can run arbitrary source code from text
or even binary files. In addition to tags
used to mark up raw code, EmPy also
uses tags that map to individual lan-
guage constructs, such as iterations or
exception handling, the latter alone dis-
tinguishing it from most other template
systems.

EmPy is extremely well documented
and easy to install, so we will not be look-
ing into the installation, or features, at
any great length. A presentation on these
topics, which was created using (guess
what) EmPy, was given at the European
Python and Zope Conference, EPC2003,
and is available online from [5].

Instead, we will be looking at EmPy
using the Wiki application mentioned at
the start of this article as an example. A
word of caution before we continue: The
project is still under development and
future versions can be expected to have a
slightly larger footprint than the current,
less than 4000 Bytes.

At the Heart of the Wiki
HeyHeyWickie itself is a simple CGI
program. It accesses a special direc-
tory (normally below the local Apache

installation) that con-
tains all the files that
are used to build the
WikiWiki Websites.
HeyHeyWickie uses file
extensions to recognize
appropriate file types,
for example FrontPage.
txt, and then loads the
file, using EmPy to
process it and Docutils
[6] to convert it to
HTML. Filenames are
mapped to WikiWiki
names (that is, simply
the filename without
the extension in this
case) which can then
be placed on arbitrary
pages.

EmPy and Docutils
fulfill different roles
here, although both
of them process the
source file. First, EmPy

parses the file content, and this causes
any dynamic code elements the file may
contain to be executed, including
expanding WikiWiki names to clickable
hyperlinks. HeyHeyWickie expects a
prepended @ in this case.

Docutils has the task of converting
the text (loaded statically from a file
and/or dynamically modified by EmPy)

to HTML; the text uses a kind of
enhanced, but readable ASCII format
called ReStructuredText (ReST), where
elements such as headings, lists, hyper-
links or tables are tagged in a kind of two
dimensional markup. ReST can do a
lot more, as clearly indicated by the tuto-
rial found at [7] and specification found
at [8].

The wickie4K.py CGI program (which
dropped the HeyHey prefix for brevity’s
sake) basically comprises a few con-
stants, which specify the WikiWiki file
directory, for example, and a few snip-
pets of HTML which occur as header and
footer lines on every page (it might be
preferable to import these from a differ-
ent module to provide more output
flexibility).

Additionally, there are a few short
functions that basically translate bet-
ween filenames, WikiWiki names and
hyperlinks, load files and use EmPy and
Docutils to process their content, and
finally pass the results to the browser
after adding headers and footers. The
main program takes care of various CGI
actions, such as the displaying and edit-
ing of existing pages and the storing of
new pages.

Total Flexibility
So far we have been looking at a neat,
compact system that simply uses EmPy

21www.linux-magazine.com October 2003

COVER STORYEmPy Wiki

Figure 1: This is what the minimalist Wiki looks like – and you really
can use it to create Wiki content. Figure 2 shows what “Slashdot
News” is all about

01 @{
02 import time, urllib, xml2obj
03
04 def printHeadlineLinks(root):
05 for story in root.children:
06 for c in story.children:
07 name = c.name
08 if name == "title":
09 title = c.getData()
10 elif name == "url":
11 url = c.getData()
12 print "- `%s <%s>`__ \n" %

(title, url)
13
14 url = "http://slashdot.org/

slashdot.xml"
15 try:
16 xmlData = urllib.urlopen

(url).read()
17 parser = xml2obj.Xml2Obj()

18 root = parser.Parse
String(xmlData)

19 except IOError:
20 root = None
21 }
22
23 @[if root]
24 Below you can see the list of

the very current Slashdot news
25 (as of @time.ctime()).
26 (Don't reload this too often

or Slashdot might temporarily
27 ban your IP!)
28
29 @printHeadlineLinks(root)
30 @[else]
31 Sorry, but there seems to be

no Internet connectivity!
32 @[end if]
33

Listing 3: Code for “SlashdotNews”

unaware of the current page’s special
function.

In order to create a list of recent
changes, you first need to know what
files exist in the WikiWiki directory; you
can then sort them by timestamp and list
them in the order of most recent edits.
The code in Listing 1 does exactly that.
First, a string of Python commands gen-
erates a sorted list of WikiWiki names
from the source files stored in the Wiki-
Wiki directory. This list includes the
RecentChanges.txt file itself which is
shown as RecentChanges.

The next line is an explanation which
occurs at the start of the page before a
few EmPy tags are iterated against the

list to display each WikiWiki name as a
URL hyperlink. The ReST format is used
to generate the list; Docutils then looks
for pipe signs in the results, which it
uses to delimit the column entries in a
neat HTML-based list.

Quotes
Quotes are another potential enhance-
ment; some people not only add them to
email messages, but also to presentation
slides (why not, if it stops people drop-
ping off during your talk?). A mere four
lines of code are required to implement
this feature (of course you could improve
efficiency by using a lot more code, but
this does work). Enclosed in an EmPy

to link WikiWiki pages and Docutils to
display and create them, as shown in
Figure 1. But the program derives its
flexibility from the fact that the page can
contain arbitrary source code which
need not be embedded in the main pro-
gram. We will be looking at a few
examples in this article.

One of the typical pages that
every WikiWiki system uses, is the
“RecentChanges” page, which is gener-
ated dynamically and informs users
about recent page edits. In the case
of HeyHeyWickie this is just a page, like
any other. It creates a header and footer
containing a link to the current page
for any other pages, but is otherwise

22 October 2003 www.linux-magazine.com

EmPy WikiCOVER STORY

001 #!/usr/bin/env python
002
003 from os.path import join,

basename, dirname, \
004 splitext, exists
005 import glob, sys, re
006 import cgi, cgitb
007
008 from docutils.core import

publish_string
009 import em
010
011
012 __version__ = '0.1.0'
013 __license__ = 'GPL'
014 __author__ = 'Dinu Gherman'
015
016 PROG = basename(sys.argv[0])
017 WIKI_DIR = "/Library/Web

Server/Documents/wickiedata/"
018 WIKI_EXT = ".txt"
019 PAGES = {}
020
021
022 # HTML snippets (should go

into some styles module)
023
024 HEADER = """\
025 <html>
026 <head>
027 <title>%%(name)s</title>
028 </head>
029 <body>
030
031 <h1>%%(name)s</h1>
032 """ % {'image':

'file://'+join(WIKI_DIR,
"wickie.jpg")}

033

034 EDIT_THIS = '\n<a
href="%(PROG)s?edit=%(name)s"
>Edit\n'

035
036 BUTTONS = """\
037 <a

href="%(PROG)s?show=RecentCha
nges">RecentChanges

038 <a
href="%(PROG)s?show=FrontPage
">FrontPage

039 """
040
041 EDIT_AREA = """\
042 <form action="%(PROG)s"

method="post">
043 <textarea name="area"

cols="80" rows="20" \
044 wrap="virtual"

style="width:100%%">
045 %(content)s
046 </textarea>
047

048 <input type="hidden"

name="save" value="%(name)s">
049 <input type="submit"

value="Save">
050 </form>
051 """
052
053 FOOTER =

"\n</body>\n</html>\n"
054
055 NEW_PAGE = "Please edit some

content for this new page \
056 in order to save it!"
057
058
059 def getWikiPaths():

060 pat = join(WIKI_DIR, "*"
+ WIKI_EXT)

061 return glob.glob(pat)
062
063 def wikiPath2name(path):
064 base = basename(path)
065 return splitext(base)[0],

exists(path)
066
067 def wikiName2path(name):
068 base = name + WIKI_EXT
069 path = join(WIKI_DIR,

base)
070 return path, exists(path)
071
072 def wikiName2link(name,

action="show"):
073 anchor = name
074 if action == "new":

anchor = anchor + '?'
075 return '`%s

<%s?%s=%s>`__' % (anchor,
PROG, action, name)

076
077 def makeButtonsLine(path,

edit):
078 name, ex =

wikiPath2name(path)
079 d = {'name': name,

'PROG': PROG}
080 s = "\n<p>\n"
081 if not edit: s = s +

EDIT_THIS % d
082 s = s + BUTTONS % d +

"</p>\n"
083 return s
084
085 def loadPage(path):
086 name, ex =

Listing 4: wickie4K.py

tag for arbitrary instructions, @{?},…
this takes the form shown in Listing 2:

If this code occurs somewhere on
a source page (and the matching
quotes.text file with one quote per line is
also supplied), you can look forward to
undying perceptions such as: “Whenever
you find yourself on the side of the
majority, it’s time to pause and reflect.
(Mark Twain)”

Let’s leave other typical extensions,
such as including the last modification
time for a page, or even displaying a hit
statistic, or email notification in case of
pages modifications, to more adven-
turous readers (the standard Python
library provides everything you need).

The main thing to look into when
planning an extension is where to place
it: on the page itself or in the main pro-
gram?

News for Net Junkies
If what you have read so far has not
exactly had you on the edge of your seat,
read on. There are far wackier applica-
tions just around the corner. For
example, you could create a page called
“SlashdotNews” that contains a code
snippet designed to download an RDF
file and display the article as an up-to-
date link list, using a similar technique
to that used by the “RecentPages” page.

Listing 3 contains the complete listing

for the “SlashdotNews” page. It uses an
extremely lean module, called xml2obj,
which John Bair created to handle sim-
ple conversions from XML to Python
objects, and kindly deposited in the
ActiveState collection, which can be
found at [9].

Figure 2 shows what the resulting page
will look like (assuming you have a con-
nection to the Internet, of course).

Security Issues
All this flexibility can be too much of a
good thing, particularly if other people
that you cannot trust have access to it,
and especially not if it happens to be on
your own machine. As HeyHeyWickie

23www.linux-magazine.com October 2003

COVER STORYEmPy Wiki

wikiPath2name(path)
087 if ex: return

open(path).read()
088 return NEW_PAGE
089
090 def empyfy(text):
091 wikiNames =

re.findall("@[a-zA-z0-9_]+",
text)

092 wikiNames = map(lambda
name:name[1:], wikiNames)

093 wikiNames = filter(lambda
name:

094 name
not in PAGES.keys(),
wikiNames)

095 for name in wikiNames:
096 PAGES[name] =

wikiName2link(name,
action="new")

097 return em.expand(text,
PAGES)

098
099 def reSTify(content):
100 settings =

{'input_encoding': 'latin-1',
101

'output_encoding': 'latin-1'}
102 rest =

publish_string(content,
writer_name='html',

103
settings_overrides=settings)

104 start =
rest.find("<body>")

105 p =
rest[start+len("<body>"):].fi
nd(">")

106 snip =

rest[start+len("<body>")+p+2:
-23] # magic

107 snip =
snip.replace("@", "@") #
hack

108 return snip
109
110 def addPageNames():
111 for path in

getWikiPaths():
112 name, ex =

wikiPath2name(path)
113 if ex:
114 link =

wikiName2link(name)
115 PAGES[name] =

link
116
117 def outputHTML(name, path,

edit, html, textarea=""):
118 out = sys.stdout.write
119 out("Content-type:

text/html\n\n")
120 out(HEADER % {'name':

name})
121 out(makeButtonsLine(path,

edit))
122 out(html)
123 if textarea:

out(textarea)
124 out(makeButtonsLine(path,

edit))
125 out(FOOTER)
126
127 def mainCGI():
128 cgitb.enable()
129
130 query =

cgi.FieldStorage()

131 qgetval = lambda n:
query.getvalue(n, '')

132 show, edit, save, new = \
133 map(qgetval, "show

edit save new".split())
134 name = show or edit or

save or new or "FrontPage"
135 path, ex =

wikiName2path(name)
136 textarea = ''
137
138 page = loadPage(path)
139
140 if edit:
141 args = {'PROG': PROG,
142 'content':

loadPage(path),
143 'name':

wikiPath2name(path)[0]}
144 textarea = EDIT_AREA

% args
145 elif save:
146 area =

qgetval('area')
147 open(path,

'w').write(area)
148
149 addPageNames()
150 mpPage = empyfy(page)
151 html = reSTify(mpPage)
152 outputHTML(name, path,

edit, html, textarea)
153
154 if __name__ == '__main__':
155 mainCGI()

Listing 4: wickie4K.py

modules to apply artificial restrictions
of this kind, but these modules were
dropped in Python 2.3, as they were con-
sidered insecure. At the moment, there is
no way to run untrusted Python code in
a sandbox using the standard interpreter.

Overly adventurous readers might con-
sider running their own interpreter in
a hostile context of this kind, allowing
them to restrict the privileges of specific
modules as required. Of course, you
could choose this option, but there is
another source of potential issues, such
as infinite loops or other resource con-
suming processes that are not easily
recognized from the “inside”. In cases
like these, it makes more sense to ask the
operating system, rather than the inter-
preter, to take care of the issue – after all
it is the operating system’s job to man-
age process resources, such as CPU
cycles and memory usage.

Hey, Wickie, where you goin’?
What started off more-or-less as a just-
for-fun programming exercise has now
turned into an interesting experiment in
minimalist WikiWiki development. A
neat combination of the assets of Python,
as an all-round programming language,
and EmPy and Docutils, as template
processors for various tasks, ensures
extremely flexible applications. Thanks
to the minimal code base, it is quite easy
to understand the basic workings of this

kind of system, and this in
turn facilitates customiza-
tion and extensions.

However, a high degree of
flexibility does imply some
risk, particularly in an
environment that provides
unrestricted access to users
on the Internet. In addition
to the security risks, there
may be some scalability and
efficiency issues which,
however, are beyond the
scope of this article. You
might well be asking your-
self where you could
usefully deploy a tool like
HeyHeyWickie, despite all
of its flexibility.

Besides its primary role as
an experimental platform
for WikiWiki systems and
the EmPy processor, there is

a great deal of scope for developers
to put their ideas into practice. Another
small group of developers will be using
the tool to develop the documentation
for another program library in the
near future. The continuing success
story of “ReStructuredText” as a near-
standard format in other Wiki systems,
such as ZWiki [10], and the fact that
HTML, LaTeX and PDF converters exist,
is one practical aspect that speaks in
favor of the tool. Due to security con-
cerns, the current extended version of
HeyHeyWickie provides facilities for cap-
turing static snapshots of WikiWiki
pages, and storing them as HTML pages,
which can in turn be served up on the
Internet, to mitigate the risk of deface-
ment attacks.

You might even consider using this
extended version as a kind of personal,
lightweight content management system,
a URL manager, or scrapbook with an
interface to remote services on the Inter-
net, just like the Slashdot example. ■

24 October 2003 www.linux-magazine.com

EmPy WikiCOVER STORY

Dinu Gherman is a
freelance IT devel-
oper, consultant,
author, and transla-
tor. He has translated
four books on the
subject of Python. His
Python Website [2]
offers a whole bunch of interesting
projects besides Wickie.

TH
E A

UT
HO

R

can execute arbitrary source
code on any page, the possi-
ble consequences should
come as no surprise if you
simply dump the program
on the Internet. This leaves
you with the typical sand-
box issue: How can I create
a “secure” environment to
restrict the capabilities of
the tool?

The easiest way to go, is
to require authentication for
the program (as provided by
Apache, for example),
allowing access only to a
select group of users. But
this puts you at the mercy of
the individual members, or
to be more precise, their
capability to use their access
credentials sensibly. Individ-
ual users could delete files
inadvertently. And in many cases,
enforcing registration for an application
or the users does not make sense

So what exactly could happen? For
one thing, malevolent code might be
executed causing file deletions or in-
stalling viruses. Or it might be a case of
file spying and forwarding. It is quite
trivial to prevent write or read access, by
running a program like HeyHeyWickie
with a non-privileged user account and
assigning rights only to specific direc-
tories.

The Python interpreter used the Bas-
tion and Rexec (restricted execution)

Figure 2: Slashdot News as an “Add-on” to the minimalist Wiki. Listing 3 contains
the complete code

[1] WikiPedia: http://www.wikipedia.org
[2] HeyHeyWickie: http://python.net/

~gherman/#heyheywickie
[3] EmPy:

http://www.alcyone.com/pyos/empy
[4] Python: http://www.python.org
[5] EmPy Presentation: http://europython.

org/Talks/Slides/empy.pdf
[6] Docutils: http://docutils.sourceforge.net
[7] Docutils Tutorial:http://www.ocf.berkeley.

edu/~bac/rest_tutorial.html
[8] ReST Specification:

http://docutils.sourceforge.net/spec/rst/
reStructuredText.html

[9] Xml2obj:http://aspn.activestate.com/
ASPN/Cookbook/Python/Recipe/149368

[10]ZWiki: http://www.zwiki.org

INFO

