
What ever you do, do not use
Windows. Additional information
and instructions to follow."

That was typical of the Penguin: “Do not
use Windows” was one of his standing
orders.

Construction Plans
Before I turned to the enemy’s building,
I first needed to study my little agent’s
helper. When I unpacked the Spybot,
I discovered only the rump, an infrared
transmitter, and a few bags of small
parts. In addition to this, the parcel
contained a serial cable with an infra-
red transmitter/receiver attached to
one end (secret agent photo 1). The
plug fitted exactly in the rear of the Spy-
bot’s rump – okay, that took care
of hitching up my technical pal to my
computer.

Time for the next task: Unfortunately
the assembly instructions were not
included in printed form, and had to be
downloaded from a CD-Rom (that
included software for Windows 98, ME
and XP only). I tried to work around this
obstacle using the Windows emulator

wine. After successfully installing the
Spybotics software and the QuickTime
movie player, it looked like I might be on
the right track – but my hopes were
dashed. After launching the software,
the intro flashed across the screen
(secret agent photo 2). But unfortu-
nately, the LEGO-wine software
combination hung while looking for the
cable (secret agent photo 3). I tried a
variety of different configurations, but all
to no avail.

To help wine find the robot, I suddenly
hit on the plan of tricking the software
into thinking it had already found it. I
contacted a friend – a double agent
(whose employees are not familiar with
the “no Windows “ standing order) – and
asked him to get me a User.ini file for
the first serial port (that is, /dev/ttyS0). I

The Penguin’s instructions are
usually clear and concise, but there
are some occasional surprises.

His last message simply told me to
pick up a parcel from a locker at the
main station. Much to my surprise,
the parcel contained a LEGO Spybot
robot in its original packaging (shown
assembled in the secret agent photo
above); I picked it up and read the
Penguin’s instructions. They read as
follows:

"Agent Baud! We need an agitator
on my adversary William
Wallopening's premises. His main
building is tightly secured.
Find a way in for the Spybot.

My Name is Baud, James Baud. I have

never seen my superior; when he

contacts me, he simply calls himself

“The Penguin”. He recently sent me a

LEGO Spybot to help me with my

next mission. To cause havoc at the

very heart of our enemies citadel.

Using the latest technological

gadgets, the mission initially

seems impossible.

BY VOLKER SCHMITT

From Helsinki with Love

Secret Agent 00L

40 October 2003 www.linux-magazine.com

Lego RobotsKNOW HOW

wine is not really a genuine emulator that
emulates Windows on Linux. Instead wine
imitates system and library calls to Windows
and maps these to Linux calls [1].
User.ini: A user specific file containing pro-
gram configurations that run on Windows
(or wine).

GLOSSARY

Volker Schmitt is a
mathematician and
works for a large
insurance company.
He is familiar with
multitasking pro-
gramming from
experience with
mainframe PL/1 timers. In his leisure
time Volker has a lot of fun with NQC
and his LEGO Spybot.

TH
E A

UT
HO

R

copied the file to the correct location in
my wine configuration.

And although the wine-LEGO team
did manage to get a bit further this time,
the program hung again after only a
short while. Surprisingly, winex, an
alternative wine specially customized
for games, crashed even earlier than
wine itself and refused even to install
the software.

Was this the end of my mission, sim-
ply because I had no construction plans
for the Spybot? I took a closer look at the
LEGO CD-Rom. Luckily for me, the indi-
vidual construction steps were stored in
JPG format in the Shared/build/ direc-
tory. And as this CD ROM is supplied
with the whole Spybot range, this is the
place to look, no matter what construc-
tion plans you need.

A quick look at the box showed
the article number for my Spybot
Gigamesh G60: It was 3806, and I could-
n’t believe my luck when I discovered
that the JPG files 3806-*.jpg had actually
been assigned consecutive numbers in
the correct order. LEGO provided short
video sequences to support more com-
plex steps. And this is where the
QuickTime program I had previously
installed came in useful. Typing

user@host:~$ wine "C:\ProU
gram Files\LEGO Software\ProU
ducts\QuickTime\QuickTimeU
Player.exe 3806-08a.mov"

displayed the required video on screen,
no problem. This setup allowed me to
assemble my technical collaborator with-
out any difficulty. The Spybot has
pressure sensors at the front, and drives
on the left and right. LEGO provides a
neat solution for the IR port. When you
remove the serial cable, you can attach

Time to take a closer look at the Spy-
bot’s IR controller (secret agent photo 5).
There are three modes: remote control,
link and action mode. The four buttons
on the controller allow you to operate
the left and right drives in forward or
reverse direction. In action mode, the red
button fires the Spybot’s laser cannon.
These new insights made me confident
of being able to complete the mission the
Penguin had set me, and lo and behold,
the next day the instructions popped up
in my mailbox the next day:

"Baud! Another agent has
discovered that the alarm system
is triggered by infrared light.
Set the alarms off time and time
again during the night to make
our enemy think the alarm system
has broken down and switch the
system off. Zero hour coincides
with the next new moon."

Do-It-Yourself Spy Programs
As I could not make use of the standard
programs on the LEGO CD, I intensified
my secret inquiries and finally discovered
something important at [2]. You can use
the NQC (“Not Quite C”) tool to program
Spybots as of version 2.5r1 on Linux. You
can either load the sources from the pro-
gram’s Website (using the wget http://
www.baumfamily.org/nqc/release/nqc-2.
5.r1.tgz command for example). Then
use the following command

tar -zxvf nqc-2.5.r1.tgz

to unpack the archive file. This creates a
new directory called nqc-2.5.r1, where
you can execute

make

41www.linux-magazine.com October 2003

the laser cannon to the IR outlet and the
light meter to the IR inlet port.

Training!
My friend the double agent had not only
supplied me a User.ini file, but passed on
some information on the capabilities
of the LEGO software. The software
contains ten fascinating missions for the
Spybot, which I could have used to
prepare myself for the Penguin’s mission
– at least this is what I assume judging
from the videos on the CD ROM. As
I could not get the software to run, I
had to make do with the standard pro-
gram that LEGO downloads to the
Spybot by default. After pressing the
start button, the LEDs lit up, and the
robot set off: After a short while, it
turned slightly and set off again. When-
ever it hit a wall, a signal from the
pressure sensor made the Spybot say
“Ouch”.

KNOW HOWLego Robots

Figure 1: IR plug of the LEGO Spybot

#include "spy.nqh" // every Spybot program needs this
task main()
{
OnFwd(OUT_A+OUT_B); // both drives ahead
Wait(300); // run for 3 seconds
OnRev(OUT_A+OUT_B); // both drives back
Wait(300); // run for 3 seconds
Off(OUT_A+OUT_B); // stop

}

Agent Listing 1: forwards, back and stop with
forw_a_back.nqc

void two_three(int value_var, int
&reference_var)
{
value_var=2; // value_var keeps its

value until the end of the func
reference_var=3; // the value of 3 is

retained after the call to the func
}

Agent Listing 2: An NQC Inline
Function

both the power on command and a
direction.

Listing 1 also shows the Wait() func-
tion. This function expects to be passed
a value in hundredths of seconds that
the robot should carry on doing what-
ever it is doing. OnRev(OUT_A+OUT_B)
switches the drives into reverse, and
Off(OUT_A+OUT_B) stops the drives.
The next step was to test the Spybot with
a simple program, that made it go ahead

for three seconds, and then back
for three seconds, before finally
stopping. The following com-
mand:

user@host:~$ nqc -TSpy -d U

forw_a_back.nqc

compiles the program and
uploads it directly to the robot. If
an error occurs during compila-
tion, NQCs error messages
provide enough information to
troubleshoot the source code. The
-TSpy option is mandatory for
every Spybotics program; -d
uploads the compiled program
directly to the robot. Of course,
this assumes that the cable is con-
nected and the Spybot switched
on. The first serial port is used by
default; the -S parameter allows
you to select another port, e.g. -
S/dev/ttyS1.

Forward March – in
Reverse?
After uploading my forw_a_

back.nqc program to the Spybot, and
launching it, the Spybot first went into
reverse (instead of moving forward) and
changed direction after three seconds.
This is not a program error, but a con-
structional whim. The gearwheel on the
drive meshes directly with the larger
gearwheels of my Gigamesh G60 (secret
agent photo 4), so you would need to
swap the forward and reverse directional
commands in your programs, if NQC did

and

make install
to install NQC. This
assumes that you have
installed the bison pro-
gram previously, and this
is not typically the case
for standard Linux instal-
lations.

NQC
NQC programs have a
similar syntax to C.
Instructions are termi-
nated by semicolons, and
blocks are enclosed in
curly brackets { }. Com-
ments are indicated by /*
and */ or follow // if they
occupy only one line.
The control structures if,
while, and for correspond
to their C counterparts.
Additionally, NQC pro-
vides repeat and until
keywords (see Box 1).
Just like C, NQC needs a
main program, which defines a task as
follows: task main() (see Listing 1). This
(and any other) task can contain instruc-
tions to the robot. Let’s look at the
following simple instruction as an exam-
ple: OnFwd(OUT_A+OUT_B).

This contains quite a lot of informa-
tion: two outputs, OUT_A and OUT_B
(linked by a + character), are passed as
parameters. The OnFwd() is itself a com-
bination of On() and Fwd() and includes

42 October 2003 www.linux-magazine.com

Lego RobotsKNOW HOW

Figure 2: LEGO Intro

Figure 3: Looking for cables Figure 4: Converting to reverse direction

01 if(condition)
02 {conditional instruction}
03 else
04 {alternative instruction}
05
06 while(condition){instructions}
07
08 do{instructions}
09 while(condition)
10
11 for(initial
instruction;condition;subsequent
instruction)
12 {repeat instructions}
13
14 repeat(numerical expression)

15 {instructions}
16
17 switch(expression)
18 {
19 case constant_expression_1:
20 {instructions_1} break;
21 ...
22 case constant_expression_n:
23 {instructions_n} break;
24 default:
25 {instructions} break;
26 }
27
28 until(expressions)
29 {expressions}

Box 1: NQC Control Structures

Figure 5: The IR Controller

not provide a SetGlobalDirection() com-
mand to do exactly that. The OUT_REV
parameter simply inverts all of these
commands. Box 2 contains a list of actu-
ation commands for the Spybot.

Hierarchy
In addition to tasks, NQC also defines
sub-routines (sub()) and inline functions
(void()). The advantage of inline func-
tions is that you can pass parameters to
them using either call by value or call
by reference techniques. NQC programs
can only handle integer variables. Agent
Listing 2 shows a typical inline function,
which is called by its name
(two_three();) and can be terminated
and quit using the return; command.
NQC provides sub-routines as an alterna-
tive; a total of 32 sub-routines can be
defined per program. Although you can-
not pass parameters to a sub-routine,
they do have the advantage of allowing
multiple callers to use a single instance
in memory. Sub-routines cannot call
other sub-routines.

You can define a total of 32 global and
four local variables, and this is why vari-
ables should be defined as locally as
possible. Variables can be manipulated
using the same operators used with inte-
ger variables in C programming: +, -, *,
/, % (mod), abs(), sign(), ++, –, ~
(bitwise negation), ! (negation), >>,
<<, ==, !=, & (bitwise AND), ^ (bit-
wise XOR), | (bitwise OR), && (AND), ||
(OR), >, <, >=, and <=.

The Spybotics program restricts the
total number of tasks to eight. Tasks nor-
mally run in parallel, that is, where the
caller of a sub-routine waits till the rou-
tine has completed, task execution
carries on without waiting. This tech-
nique allows you to write genuine
multitasking programs in NQC. Box
three shows the individual task com-
mands.

The fact that the Spybot is equipped
with sensors is particularly useful to my
mission. My agent program will need to
co-ordinate certain actions, depending
on the status of the sensors. The first
sensor is the pressure, which NQC refers
to as SENSOR_1. The pressure sensor is
normally set up to return Boolean val-
ues, that is 0 (status “not pressed”) and
1 (status “pressed”). NQC refers to this
as SENSOR_MODE_BOOL. A light sensor
() SENSOR_2 returns percentage values
(0 through 100) and is referred to as SEN-
SOR_MODE_PERCENT in NQC.

NQC additionally defines SENSOR_
MODE_RAW for the Spybot – this is an
internal representation of the sensor
value for the robot (returning a value
between 0 and 1024). You can query the

status of a sensor by assigning a vari-
able, e.g. x=SENSOR_1; additionally,
using a query such as if(SENSOR
_1==1) allows you to discover whether
the sensor has been pressed or not. Box
4 contains a list of sensor commands.

Sound
The Spybot can emit sounds. Box 5 pro-
vides an overview of the commands
used to do so. You can access the laser
either by doing On(OUT_C); or Send-
VLL(n); (where n is a value between 0
and 127). This leaves the commands that
control internal timers, etc., and the
event handlers with up to 16 different,
customizable events. All I need for my
task is the Random(n); command, which
generates a random value between 0 and

43www.linux-magazine.com October 2003

KNOW HOWLego Robots

call by value: In this case, only the value of a
variable parameter is passed to the function.
If the value of the parameter changes within
the function, the original value is restored
after leaving the function.
call by reference: Changes to a variable para-
meter within a function are retained after
quitting the function.The & symbol in the
function header defines a call of this type.

GLOSSARY

01 OUT_A // right drive
02 OUT_B // left drive
03 OUT_V // laser
04 outputs // + combination of
05 // OUT_A, OUT_B and OUT_C (if it makes sense)
06
07 On(outputs) // on
08 Off(outputs) // off
09 Fload(outputs) // run out
10 Fwd(outputs) // forward
11 Rev(outputs) // reverse
12 Toggle(outputs) // change direction
13 OnFwd(outputs) // = On()+Fwd()
14 OnRev(outputs) // = On()+Rev()
15 OnFor(outputs, time) // 100time = 1 second
16
17 SetOutput(outputs, mode)
18 // mode one of OUT_OFF, OUT_ON, OUT_FLOAT
19 SetDirection(outputs, direction)
20 // direction one of OUT_FWD, OUT_REV, OUT_TOGGLE
21 SetPower(outputs, power)
22 // power from 0 to 7 sets speed
23 x=OutputStatus(n)
24 // returns current status
25 SetGlobalOutput(outputs, mode)
26 // mode from OUT_ON, OUT_OFF Toggles the availability of
27 // control instructions to the ports on or off.
28 SetGlobalDirection(outputs, direction)
29 // direction from OUT_FWD, OUT_REV, OUT_TOGGLE
30 // Inverts all commands or reverts to norm, or changes
31 // Important command for the Gigamesh G60
32 SetMaxPower(outputs, max_power)
33 // max_power from OUT_LOW, OUT_HALF, OUT_FULL
34 // Sets tops speed for the drives
35 x=GlobalOutputStatus(n)
36 // returns general status

Box 2: NQC Actuation Commands

querying the light sensor should allow
me to pick this up. The lightcheck() task
in the NCQ program, helsinki.nqc (to be
found at www.linux-magazine.com/
issue/35 and on the subs CD), would do
that job. I also wanted the Spybot to
browse the aisles at random, randomly
opting for a direction (that is using the
Random() function to turn left or right)
when it encountered a t-junction or a
dead-end. The obstacle() task took care
of that.

The important thing at this point was
to avoid the lightcheck() and obstacle()
functions obstructing each other. That
would be fatal to the mission, if the Spy-
bot kept running into a dead-end simply

because the ambient light had unexpect-
edly changed. I decided to use a
semaphore technique for both tasks:
before performing an action, a task sets a
global variable, sem, to prevent any
other tasks from occurring. Tasks will
only perform specific actions, if this vari-
able is 0. While this is happening, the
variable is temporarily set to 1 to prevent
other tasks from occurring.

The helsinki.nqc program also con-
tains a sub-routine called wait() that
makes the Spybot wait on the spot for
the first half hour – enough time for me
to make a getaway. After a few test runs
in my lab, I was able to customize the
wait() times, to allow the Spybot to per-
form 90 degree turns on the spot.

I sent a message to the Penguin, telling
him I was ready. On the night, I opened
up the air-conditioning grid just a
crack, sent the Spybot off, and got out of
there. Half an hour later, I could hear the
first alarm bells going off in the target
building. ■

n. The results of my research can be
found at the website (or should I say
secret drop site?) [2] with other addi-
tional information.

Time to Get Serious
Now I had everything I needed, to start
programming the Spybot, I set off to do a
spot of reconnaissance, hiding in front of
the target building. I couldn’t seem to
find an entry point into the building, but
then I had an idea – the air-conditioning
vents. On the outside they were secured
only with a light grating, and would pro-
vide a useful access point for the small
robot.

Disguised as a pizza delivery boy, I
took a closer look at the structure of the
building, paying close attention to the
air-conditioning. Air-conditioning ducts
connected the various levels of the build-
ing with large grids allowing the required
airflow.

My plan was beginning to gel: I would
plant the Spybot in the building at night
using one of the poorly protected grids
for access and just let it run from there.
The light would increase each time the
Spybot passed over a grid. After passing
the grid, the light level would drop again
– the light sensor should be able to pick
that up. I could then tell the robot to
back up to the grid and start making
some noise to set off the alarms before
getting the hell out of there.

There would be a ten percent drop in
luminosity when the robot moved from a
grid back to a covered part of the duct;

44 October 2003 www.linux-magazine.com

Lego RobotsKNOW HOW

start taskname; // launches a task
stop taskname; // stops a task
StopAllTasks(); // stops all tasks

Box 3: Task Commands

sensor // SENSOR_1 or SENSOR_2
n // 0,1 for SENSOR_1 or SENSOR_2
mode // SENSOR_MODE_BOOL, SENSOR_MODE_PERCENT, SENSOR_MODE_RAW

SetSensorMode(sensor,mode) // Sets the mode for a sensor
ClearSensor(sensor) // Only used for resetting sensors that
// measure impulses or revs
SensorValue(n) // x=SensorValue(0) corresponds to x=SENSOR_1
SensorMode(n) // returns the mode
SensorValueRaw(n) // returns the internal sensor value

Box 4: Sensor commands

PlaySound(sound) // sound can be
// SOUND_CLICK, SOUND_DOUBLE_BEEP, SOUND_DOWN
// SOUND_UP, SOUND_LOW_BEEP, SOUND_FAST_UP
(frequency, duration) // PlayTone(440,50) will play
// a standard pitch A for half a second

MuteSound()
// Stops all sound and toggles to mute mode

UnmuteSound()
// Reinitializes sound output and toggles sound output back on

ClearSound()
// removes sound from memory

Box 5: NQC Sound

Figure 6: The Grid

[1] wine homepage: http://www.winehq.com

[2] NQC: http://www.baumfamily.org/nqc/

INFO

