Do-It-Yourself RPM Packages

Private Packaging Service

Most Linux software is available as
source code and needs to be com-
piled. This may be a simple task, but
problems start to occur when you
need to remove an application.

BY ANDREA MULLER

ware that accumulates on a machine

over a length of time amazing?
Although you might know where those
binaries got to, the /usr/local/lib subdi-
rectory tends to put you at a total loss.
Fortunately, you can avoid manual dele-
tion and puzzling over the origin of a file
if your distribution’s package manager
also handles self-compiled software.

The most popular program for this
task is rpm, the Red Hat Package
Manager [5]. It not only stores informa-
tion on the installed packages in its
database, but also records their depen-
dencies to allow for clean removal. This
is an important benefit because, al-
though you may have installed a library
in order to run program A, you cannot
simply remove it along with A. Doing so
might affect other programs installed
subsequently that also rely on the library
in question. RPM monitors the attempt
and warns you if this is the case.

I sn’t the amount of self-compiled soft-

Manual Labor Preferred
To allow RPM to manage self-compiled
software, the source code has to be pack-
aged first. The checkinstall [1,2] program
monitors the installation and creates an
RPM package from the files copied when
you call make install.

Like any automated solution there are
a few drawbacks, such as the fact that it
does not support all the capabilities the

RPM command provides. checkinstall
cannot distribute a software program
across multiple packages and even re-
fuses to cooperate entirely in some cases.

The worst issue is the fact that the file
list for package is created during the
installation process, in other words, you
have no way of knowing whether you
will be overwriting existing files. How-
ever, this issue is on the shortlist for a
future version which will support the
RPM-BUILDROOT option. The option
allows you to build packages in a kind of
sandbox, in the /tmp directory, for exam-
ple. The program sees /tmp as its root
directory for the installation, thus avoid-
ing any possibility of overwriting system
files.

If you prefer to avoid half-hearted
attempts, and additional tools, you might
decide to build your own packages.
Unfortunately, the RPM documentation
does not provide any clues as to how to
do this, and “Maximum RPM” [3], the
reference for current and aspiring pack-
age builders is not recommended as a
quick reference, as it weighs in at several
hundred pages.

m October 2003 www.linux-magazine.com

Instead of boring you to death with
tons of theory, lets look at how to build a
package for the xpuyopuyo [4] program,
a network-aware and highly addictive
Tetris clone with neat graphics and
comic sounds (see Figure 1); that alone
should make the effort of building the
package worthwhile.

Preparatory Steps
If you think you can just launch into this,
think again. Most distributors only install
programs they consider absolutely neces-
sary to install RPMs, but definitely not
the tools you need to create an RPM. In
our case this means we need to install the
rpm-build package before we can start.
Our packaging counter, that is the wor-
king directory for the package builder, is
located below /usr/src, and again every
distribution does its own thing. SuSE
calls it packages, Mandrake prefers RPM,

make install: This command runs the install

section of the makefile, copying the files
belonging to an application to the appropri-
ate target directories on a system.

and the US market leader opted for red-
hat in a flight of egocentricity.

The five subdirectories below this
level, SOURCES, SPECS, BUILD, RPMS,
and SRPMS are used for package build-
ing. RPMS and SRPMS are receptacles for
storing the binary and source packages
we will be creating, and the BUILD direc-
tory is used for compiling the software.
As you cannot launch the commands
required to create an RPM interactively —
instead RPM parses a so-called specfile
containing the commands - there is
nothing for you to do in this folder.

The package builder wuses the
SOURCES and SPECS directories. You
need to place the tar.gz archive with the
software you will be packaging below
SOURCES. If the source code is not avail-
able in tar.gz format, you will need to
convert it first.

Assume superuser privileges by calling
su and typing the root password. You will
need superuser privileges throughout the
build process. You can allow non-privi-
leged users to build packages, but this is
complicated to set up. Download the
http://chaos2.org/xpuyopuyo/xpuyopiyo-
0.9.8.tar.gz file and copy it to SOURCES.

Then change to the SPECS directory.
This is where RPM will expect the spec-
file. There are no restrictions on the file
name, although a naming convention
along the lines of programname.spec is
common. While still working with root
privileges, open an editor and create the
Xxpuyopuyo.spec text file.

The Preamble

A specfile comprises three sections. The
first section, known as the preamble,
contains generic information which will
later be used to create the package name,

Listing 1- Specfile preamble for the

#Specfile for xpuyopuyo

Copyright: GPL

Group: Games/Arcade

Source: xpuyopuyo-0.9.8.tar.gz
URL: http://chaos2.org/
Distribution: Mandrake 9.0
Packager:

Summary: Network-aware Tetris Clone
Name: Xpuyopuyo

Version: 0.9.8

Release: apocalypse

Andrea Mueller <amueller@linux-user.de>

Options Al

Game Metwork Help

& @ 0001920

044 009 000
000 000 000

054 004 000
000 000 - 000

000/ 05 24
2 Default ¢an [0]

1: andi@apocalypse [0]

Figure 1: Xpuyopuyo — our sample program used
to demonstrate building an RPM package

for example. The preamble for xpuyop-
uyo might appear as shown in Listing 1.

The structure is extremely simple, and
so similar for each package that it makes
sense to work with templates: an RPM
specific tag followed by a colon and the
corresponding value. The values for
Name, Version, and Release will later
form the package name. The Version tag
must not contain certain characters like a
space or minus. Some other characters
may cause problems to, so only use
alphanumerical characters and dots to be
on the safe side.

The Release tag is a kind of version
number for the package. Distributors
often compile multiple packages for the

%description

hprep
hsetup

%build
make

%install

Network-aware Tetris Clone with cool sound.

./configure --prefix=/usr/local

make install-strip
cp doc/xpuyopuyo.txt /usr/local/share/xpuyopuyo

same program version, possibly because
patches have been released, or the dis-
tributor has enhanced the program in
some ways. This field should be used to
add a distribution specific ID, but only
Mandrake uses it consistently in this
way. Mandrake package names will
always contain the mdk string.

Of course, you can add what ever you
like - we will be using the hostname in
our example. You should note that some
characters, like the minus sign for exam-
ple, are not permissible. The Summary
field provides space for a short descrip-
tion, the Source tag stores the name of
the sourcecode archive and the URL field
provides service information for package
users. Users can tell at a glance where
the software in the RPM comes from.

The Distribution line is optional - you
can omit it if you like. However, add your
name, or nick, and a valid email address
after the Packager keyword, that is, if you
intend to make your do-it-yourself pack-
age available to other users. It is easy to
make mistakes when building packages,
and users will be happy to have someone
to help them out, should this happen.

Let’s take a quick look at the Group
item. This is where you specify the group
that GUI-based package managers, like
kpackage for example, should categorize
the software. You could create your own
groups in theory, but if you intend to dis-
tribute the packages you build, you
should try to stick to the current naming
conventions. Check the RPM documen-
tation in the GROUPS file below
/usr/share/doc for the current groups.

The Building Plan

The main section of the specfile contains
the instructions for unpacking, configur-

Listing 2: Main section of specfile for

Xpuyopuyo

--with-gnome=no

www.linux-magazine.com October 2003 “

ing, and installing the software.
The procedure can differ from one
application to the next, although
the three command trick is typical

configure
make
make install

Listing 3: File list for Xpuyopuyo

sfiles
/usr/Tocal/man/man6/xpuyopuyo.6
/usr/local/bin/xpuyopuyo
/usr/Tocal/share/xpuyopuyo

%doc /usr/Tocal/share/xpuyopuyo/xpuyopuyo.txt

main section of a specfile.
However, you should restrict the
sections that will run later when
the package is installed (an exam-
ple would be the %post section)
to commands that are guaranteed
to be available on any Linux
system.

This is also true of xpuyopuyo.
Just add the lines from Listing 2 to your
specfile.

RPM-specific keywords are followed
by percent signs. The %description item
contains the text that appears when
a user types rpm -qi xpuyopuyo to dis-
play information on the package. This
is a multi line entry that can contain
any character types. The %prep section
terminates the description and initiates
the build process preparation tasks.
This phase takes care of any steps
needed to get the source package ready
for compiling.

The %setup item introduces a simplifi-
cation that RPM provides for package
builders: the use of macros. Just like
Office programs can record macros to
simplify recurring tasks, RPM has similar
tools. The Setup macro is probably
the most popular, and takes care of sev-
eral tasks. It unpacks the archive file
stored below SOURCES in BUILD and
then uses the cd command to change to
that directory. If it discovers a previous
attempt to build the current package, the
Setup macro will remove any residues
created below BUILD by the previous
compilation attempt before unpacking
the sources.

The next line in the %prep section
launches the actual build. You would
typically call the ./configure command to
get the program ready for compiling. The
--prefix parameter is just used as an
example in this case, as the script will
default to this directory as the target
directory for the program. This is where
you add the configure options that
control the configuration script in the
shell. The package should be installed in
Just/local just like any other self-
compiled package. This allows you to
segregate self-compiled software and dis-
tribution packages. It also means that
updates should be no problem, provided
your distributor maintains its packages
carefully.

The configure option, --with-
gnome=no, which is typical of
xpuyopuyo prevents GNOME desktop
icons from being created and copied to
the directories below /usr/share.

RPM actually compiles the software in
the %build section that now follows.
The make command does this in xpuyop-
uyo‘s case, just like the majority of
packages. The next command is, of
course, %install - in our example the
make install-strip command is called to
install the compiled software in /usr/
local.

This completes the main section of the
specfile, although there are other sec-
tions that can be added here, such as the
%patch macro that automates patch
application. (Patches are used to correct
errors or provide additional functionality
to the software.) The % package instruc-
tion divides the software up into
multiple packages, such as program.rpm,
program-doc.rpm and program-
devel.rpm. If you build a package that
contains a library, you should add the
following lines to your specfile:

»post
ldconfig

This calls the ldconfig command after
installing the package, and registers the
newly installed library, allowing other
programs to discover it.

You can, theoretically, run arbitrary
commands in the subsections of the

GLOSSARY

strip: This command removes symbols from
binary files, thus reducing their footprint.
Symbols are used by developers when debug-
ging a program, and can be output using the
nm command. The output can show the
functionality provided by a library, for exam-
ple.Removing symbols from a binary file will
reduce its footprint considerably, and this is
why most distributors provide only stripped
programs and libraries.

n October 2003 www.linux-magazine.com

The Hard Part

Everything is set up, but RPM still does
not know which files belong to the pack-
age. In fact, you don’t know this either,
as you have never installed xpuyopuyo
previously. There is no easy way to cre-
ate a file list. Some people install the
software up front, and use the install-
watch program to create a list of the files
copied during installation. This is exactly
what checkinstall does, and the method
is not 100 percent foolproof.

Hardliners will assemble the file list on
the basis of the Makefile. As an alterna-
tive, you could install the software as a
normal user, using a subdirectory of your
home as the target. You could write a
script to compile a file list, or redirect the
output from Is -R. Of course, you will
need to modify the paths in the specfile:
instead of /home/username/test/bin/file,
the specfile will read /usr/local/bin/file.

Although it might be tedious, the latter
method is preferable. By installing the
package as a normal user, you ensure
that “make install” will only install to
the subdirectories below the supplied --
prefix, and you can ensure that the
Makefile does not include a killer com-
mand like “rm -rf”. Also, this allows you
to check that the developer packages
required by the build process are avail-
able (xpuyopuyo needs the following
development packages: gtk, xpm, XFree,
glib, and mikmod).

Some friendly programmers actually
include a specfile, and a complete file
list, with their software. Now this might
sound like your favorite TV cooking pro-
gram, but I got this ready while I was
waiting: Listing 3 shows the last section
of the specfile.

The last two lines are interesting. Mul-
tiple subdirectories with images and
sounds are copied to /usr/local/share/
xpuyopuyo by the installation process. If
the %files section includes a directory,
the directory and its contents are packed
and become part of the package - so

ornairn: [usrsco/ REVMISPEGS

Ausr/bindinstall -c -m 644

uyo.txk

fusr/bindinstall -c -m 644

susrsbindinstall -c -m 644

make[3]: Leaving directory

make[Z]: Leaving directory

make[1]: Leaving directory

+ Jusrs/lib/ rpmdbrp-mandrake
no RPM_BUILD_ROOT wariable; exiting.

LSsnds

Finding Provides:
Finding Requires:
Using BuildRoot: i686 to search libs
Prefeq: rpmlib(FPaylosdFilesHaveFrefix)
L0.4-1

ames) <= 3.0.4-1

[rootPapocalypse SPECSI# B

ASdocdxpuyopuyo L txt AusrSlocal/share/<puyopuyosxpuy op

ASCOPYIMG Susrslocalssharesxpuyopuyo/copylng . txt
Susrs localssharesxpuyopuyossounds/
tSusr/sro/RPMABUILD %puyopuyo-0.9.5"
tSusr/sro/RPMABUILD xpuyopuyo-0.9.5"
“Susr/sro/RPMABUILD xpuyopuyo-0.9.5"

Processing files: xpuyopuyo-0.9.5-apocalypse

warning: File listed twice: Afusr/local/share/xpuyopuyos/=puyopuyo.txt
(using Ausr/libsrpm/Find-provides) ...

(using susr/libsrpms/find-requires). ..

<= 4.0-1 rpmlib(CompressedFileNames) <= 3
Fequiresirpmlib): rpmlib({FayloadFilesHavePrefix] <= 4.0-1 rpmlib(Compress=dFileM

Reqguires: ld-lirux.so.Z2 libc.so.6 libdl.so.2 libgdk-1.2.s0.0 libglib-1.2.s0.0 11

bgmodule-1.2.50.0 libgtk-1.2.50.0 libm.so.b libnsl.so.l libXi1ll.so.6 libXext.so.6
libXi.so.6 libXpm.so.4 libc.so.6(GLIBC_Z.0) libc.so.6(GLIBC_Z.1)

Wrote: susr/src/RPM/SRPMS/ xpuyopuyo-0.9.5-apocalypse.src.rpn

Wrote: susr/src/RPM/RPMS/1636/xpuyopuyo-0.9.5-3pocalypse . 1686.rpm

Figure 2: RPM has created binary and source packages

avoid adding the whole of /usr/local in
this section.

The %doc prefix in the last line, tags
the file that follows as documentation.
This file is displayed if you type rpm -gd
xpuyopuyo to query the package.

The %doc tag also has another use:
programs often supply documentation
that make install does not copy. If the
files section of the specfile contains a
line such as

%»doc README FAQ CREDITS

RPM will copy these three files from the
source code directory to a subdirectory
of defaultdocdir and add them to the
package. The defaultdocdir differs
depending on your distribution, default-
ing to /usr/share/doc on Mandrake and
Red Hat, and to /usr/share/doc/packages
for SuSE. The default can be modified by
editing the .rpmrc file in the home direc-
tory for root.

Wildcards in the %files section of the
specfile can make life easier. If a program
copies a whole bunch of localization
files to /usr/local/share/locale, you can
use a single line to include all of them:

/usr/local/share/locale/*2
/LC_MESSAGES/programname.mo

RPM will complain if some of these lan-
guage directories do not contain a file
matching this pattern, although execu-
tion will continue normally.

Building the Package

We are finally ready to build the
package. To do so, call the rpm -ba xpuy-

opuyo.spec command in the SPECS direc-
tory; Red Hat users will need rpmbuild
-ba xpuyopuyo.spec instead. The -b para-
meter tells RPM to parse a file to obtain
control information for the build process.
In this case we are looking to perform a
complete build. RPM should work its
way through the specfile sections and
create both a binary and a source pack-
age, as is indicated by the a parameter.

If you want to omit the source RPM,
choose b instead, that is, you type rpm -
bb xpuyopuyo.spec. The rpm -bc
xpuyopuyo.spec tests whether the pack-
age will compile, running the specfile up
to the %build item, that is without copy-
ing any files.

No matter what command you issue,
rpm is extremely verbose. You can see
what the package manager is doing and
are also shown the output created by the
individual commands:

+ cd xpuyopuyo-0.9.5

+ ./configure -prefix=2
/usr/local

creating cache ./config.cache

Lines starting with plus signs show what
RPM is currently doing; in this case,
changing to the source code directory
and calling the ./configure command, fol-
lowed by the output from the script. If
everything works out okay, the last few
lines should appear as those shown in
Figure 2.

Before the success message, you can
see that RPM to some extent attempts to
ascertain the package’s dependencies. To
do so, it calls the ldd command for each
binary file to check the libraries the file

is linked against. The xpuyopuyo pack-
age will refuse to install if the mikmod
library is not found, for example. Depen-
dencies that ldd does not recognize must
be specified using the optional Requires:
tag in the preamble.

The mail program, Mutt, needs a local
mail server, for example, that is it needs
a tag that reads Requires: mailserver. The
counterpart to this tag is the Provides:
tag. Distributors who maintain their
packages carefully will add Provides:
mailserver to the preamble for sendmail
and postfix.

The complete binary package is
now stored in the i686 subdirectory
below RPM. Each distribution optimizes
for a different processor type, but you
can overwrite the default using the
rpm command line switch --target
processortype.

The “make install-strip” command in
the specfile copies the xpuyopuyo, but it
does not add the newly created package
to the package database. To add the
Tetris clone to the database, you will
need to install the package using rpm -i
../RPMS/1686/xpuyopuyo-0.9.5-apoca-
lypse.i686.rpm. If you are not in the
SPECS directory, supply the absolute
pathname. You can then use the rpm -qil
xpuyopuyo | less command to query
your do-it-yourself package for informa-
tion.

Most of you will at some time have
installed a package that did not turn out
as expected. This may be caused by a
single missing file. To save your users
from this kind of frustrating experience,
ensure that you test your do-it-yourself
RPMs on another computer - not the
build system - before you distribute
them.]

[1] Checkinstall: http://asic-linux.com.mx/
~izto/checkinstall/

[2] Christian Perle:“Say Hello, Wave Good-
bye”, Linux Magazine Issue 22,
July/August 2002,
http://www.linux-magazine.com/issue/
22/checkinstall.pdf

[3] Maximum RPM: http://www.redhat.com/
docs/books/max-rpm/

[4] Xpuyopuyo: http://chaos2.org/

[5] Search engine for Linux rpm packages:
http://www.rpmseek.com

magazine.com October 2003 -

