
gen-key (“generate key”) command will
create a new key-pair for your own
use. If you are not sure of the syntax,
typing

gpg --help | less

will provide a quick overview; at least
there is no lack of documentation for this
aspect. If you consider yourself com-
mand line challenged, you might like to
look into “GNU Privacy Assistant” gpa
(http://www.gnupg.org/related_software/
gpa/), which is a GUI version of the
same tools (see Figure 1).

Unfortunately, this tool provides only
a fraction of the command line tool’s
functionality at present; also, only a few
distributions supply the latest version,
and the GUI of the older versions is a
challenge in itself. Reason enough not to
discuss it any further at this point.

A few encryption and signing tasks,
just to get the hang of the new tool,
including configuring your mail pro-
gram, signing a few messages,
encrypting them with your own private
key and sending them to yourself – then
it’s time to get ready for the party.

The first important point: Before your
friends and colleagues can sign your

public key (and, more importantly, use it
to create envelopes for messages they
send to you), they first need your key.
The traditional method of extracting it is
as follows

gpg --export -a U

"Name" >public_key

This writes the ASCII text key to a file
called public_key that you can use to dis-
tribute your key. But who wants to go to
the trouble of sending the key to all the
party-goers (whose email addresses you
may not even know), or even distribut-
ing the key on floppies? Anyone who
missed the party and wants to send you
encrypted messages, would still need
your public key.

Fortunately, there is such a thing as a
PGP/GnuPG key-server, and gpg facili-
tates uploading your public key to the
server (and downloading the keys of
potential mail correspondents). Many of
these servers synchronize their key data-
bases, and this typically allows you to
select just one key-server, such as the
one run by MIT. You would then enter
the server in your GnuPG configuration
file ~/.gnupg/options (this could be
called gnupg.conf instead)

All those resolutions! By now, not
only the mail gurus should be
aware that email messages are

readable for anyone with access to the
data in transit to their final destination
(and on the target server). Although one
tends to use an envelope to protect the
confidentiality of even the most harm-
less of written messages, people tend to
hide their guilty conscience with respect
to their half-hearted approach to PGP or
GnuPG keys behind statements such as
“I have nothing to hide from my provider
or the Feds”

Nearly any email program will support
electronic envelopes of this kind.
Although there is a modicum of truth in
the statement, “never used it, because it
is too complex”, a total embargo on
PGP/GnuPG is definitely not justifiable.
And if friends or colleagues then invite
you to a Key Signing party, you can
expect your guilty conscience to win out
in the end…

Tools
Assuming that you have installed the
GnuPG command line tool gpg, the gpg --

Modern mail clients can handle

GnuPG encryption and decryption

with very little intervention. Unfortu-

nately, you do need to set up the keys

– and that is a task that does not fall

far short of rocket science.

BY PATRICIA JUNG

Using GnuPG Keys

Key Signing Party

45www.linux-magazine.com October 2003

Patricia Jung has spent her working
life as an editor, technical writer and
system administrator on Linux and
FreeBSD systems. Having been an
editor for Linux Magazine for quite a
while now she feels privileged to
continue building a career based on
free Unix systems exclusively.

TH
E A

UT
HO

R

KNOW HOWGnuPG
Fritz von Beust,visipix.com

46 October 2003 www.linux-magazine.com

keyserver pgp.mit.edu

… and use the gpg --
search-keys email@address
command to add the key for
the mail address you sup-
plied to your public keyring
(see Listing 1). This file is
stored along with your pri-
vate keyring, secring.gpg, in
the ~/.gnupg directory as
pubring.gpg.

If the search key you
entered matches multiple
keys on the server, gpg
displays a list like the one
shown in our example.
Instead of responding with
“import keys 1-5”, you can
simply type 1 (or 2, or …) at
this point: gpg displays the
key ID for each selection –
this is 1E786A45 in every
case in Listing 1. In other
words, the same key is being
used for multiple email
addresses.

However, before you attempt to upload
your own public key to the key-server,
using gpg --send-keys “Name”, first take a
deep breath! You will need to protect
your own private key zealously from this
point on.

If you forget the passphrase, there is
no way to revoke your key. This is why it
makes sense to use gpg --gen-revoc
“name” to create a revocation certificate
for your own key, and file a hard copy in
a safe place, in case disaster strikes. You
should do this now, while the
passphrase is still fresh in your mind and
before you upload the public key.

configure your mail client to
dispatch the fingerprint in a
user-defined header (a so-
called X header) with every
outgoing message (such as
in: X-GPG-Fingerprint:).
Remember that everything
depends on the fingerprint:
to ensure that a key that you
downloaded from the key-
server really is what the key
owner intended, you can ask
gpg for the fingerprint of the
keyring entry, and check this
series of hexadecimal num-
bers in the output from…

webmistress@fri:~$ gpg U

--fingerprint U

pjung@linux-user.de
[...]
Key fingerprint = 2350 U
B799 81E8 B20B 3743 U

D541 CA1E C447 1E78 6A45

… against the fingerprint dis-
tributed by the key owner.

This is why you will need to print
enough hard copies of your own
fingerprint to distribute to the party
guests. At some parties, fingerprints are
collected before the event and passed on
to each of the attendees.

It’s Party Time
Unfortunately, comparing fingerprints
only lets you verify the key itself, but
you have no way of knowing if the key
owner really is the person whose name
is stored for the key unless you have that
person present some ID. So anyone
attending the signing party will need

GnuPGKNOW HOW

PGP/GnuPG Keys:The “GNU Privacy Guard”
(http://www.gnupg.org/) is a patent-free
Open Source implementation of the OpenPGP
standards, which in turn is based on the
“Pretty Good Privacy”tool (now turned com-
mercial). If you want to use GnuPG or PGP to
encrypt or sign documents, you will need a
key-pair comprising a private key (which
needs to be kept secret and protected by a
passphrase), and a public key (which is distrib-
uted to others).
When you send a message to someone with a
GnuPG or PGP envelope, you first use the
recipient’s public key to encrypt the message.
The recipient’s private key is required to

decrypt the message.When you sign a docu-
ment, you utilise your own private key.The
recipient can then decrypt the message use
the sender’s public to verify that the message
has reached its final destination without
being manipulated or damaged en route.
Key Signing: Key signing refers to signing a
correspondence partner’s public key with
your own private key, thus validating the
link between the key owner and her key,
and building up a “Web of Trust”, a trusted
network: If the public key of a third party
has been signed by someone I trust, I can
assume that the person I trust has taken
care to verify the credentials in question

i.e. the link between the third party’s
identity and key.This in turn allows me
to regard the third party’s key as trust-
worthy.
Local part: The part of an email address left
of the @ sign.Traditionally, this was always
the username on a mail system, but today
it only means that this part of the name is
local to the computer or domain (the part
of the name to the right of the @ sign).
Hexadecimal numbers: A base 16 numeric
system (instead of base 10 in the case of the
normal decimal system) that uses the num-
bers 0-9, followed by A (which corresponds to
10) through F (15).

GLOSSARY

Figure 1: The GNU Privacy Assistant only provides a fraction of GnuPG’s func-
tionality at present

Fingerprints
You, and the people you exchange mes-
sages with, will need a way of verifying
that the key stored on the server really
does contain the data it should. To do
that, you should create a fingerprint of
your own public key, by typing gpg --fin-
gerprint “name” or gpg --fingerprint
email@address (most, but not all gpg
command line options allow you to iden-
tify the required key either by the
matching name, the key ID, the email
address, or even its local part – provided
the information supplied is unique).

Just to be sure, you might like to store
a copy of your fingerprint. Also, you can

handed out the hard copy of the finger-
print really does match the person
depicted in the ID they present, you can
go on to download the public key and
compare its fingerprint with the one you

were given. Now you have validated
both the key and the correspondent’s
identity, but how can you be sure that
mail addressed to the email address indi-
cated by the key will really reach the
person you validated?

To allow them to be added
or revoked during the lifetime of a key,
addresses do not have any influence on
the fingerprint (this also applies to key
signatures). So if you really want
to ensure that the correspondent, her
email address and key really do match
before you add your signature, you
will first need to check the mail
addresses.

To do so, you send a message
encrypted using the public key you vali-
dated to the correspondent at the
address that you have been asked to
sign. The message must contain a
request to sign the content of the mes-
sage and return it. To ensure that the
recipient cannot just guess the content of
the challenge, but really has to decrypt
it, the body of the mail includes a ran-

some kind of ID – a passport, ID card, or
some other written documents – how
else could a stranger trust, Patricia Jung
to really be Patricia Jung? After con-
vincing yourself that the person who

47www.linux-magazine.com October 2003

KNOW HOWGnuPG

Figure 2: You can use a Web interface to query the MIT key-server

webmistress@fri:~$ gpg search-keys U

pjung@linux-user.de
gpg: WARNING: Confidential data may be stored U

on disk.
gpg: see http://www.gnupg.org/documentationU
/faqs.html for more information
gpg: created keyring U

'/home/webmistress/.gnupg/pubring.gpg'
gpg: searching for "pjung@linux-user.de" on HKP U

server pgp.mit.edu
Keys 1-5 of 5 for "pjung@linux-user.de"
(1) Patricia Jung <pjung@linux-user.de>

1024 bit DSA key 1E786A45, created U

2003-01-17
(2) Patricia Jung <pjung@linux-magazin.de>

1024 bit DSA key 1E786A45, created U

2003-01-17
[...]
(5) Patricia Jung <pjung@linux-magazine.com>

1024 bit DSA key 1E786A45, created U

2003-01-17
Enter number(s), N)ext, or Q)uit > 1-5
gpg: Key 1E786A45: "Public key "Patricia Jung
<pjung@linux-user.de>" imported
gpg: Number of keys processed: 1
gpg: imported: 1

Listing 1: Importing a public key
from a key-server advertisement

48 October 2003 www.linux-magazine.com

GnuPGKNOW HOW

dom string, which can be generated
using the following command:

dd if=/dev/random bs=1 count=10U
2>/dev/null | uuencode -m - | U

sed -n 2p

Some scripts that help automate this pro-
cedure – assuming some customization –
are available on the Web from [1], for
example.

When the random string is returned to
you (and assuming you made a note of
it), you know that the recipient can
decrypt the message, and if the signature
attached to the reply is okay, you also
know that the message has not been
manipulated en route.

And now the signing ceremony can
begin. Run gpg --edit email@address to
do so; this will open an interactive tool
that displays a list of addresses assigned
to this key (see Listing 2). You can type
help [Enter] at the internal prompt, to
display your current options. If you want
to sign all of these addresses, you can
simply type sign [Enter]; if you want to
apply restrictions, select the appropriate
number before entering a command, and
press then [Enter] to confirm. In the first
case gpg will prompt you to confirm (Do
you really want to sign all of these
addresses?) – you can then type [y] for
yes, or [n] for no. If there is only one
email address to sign, then this question
is skipped.

Then the question of trust: Have you
really “done very careful checking?”
(answer [3]) or have you simply “done
casual checking ([2])?”. This specifies
the level of trust that you will be
assigning to the signature for this key.
Again you are prompted to confirm, and
then the moment of truth: the tool asks
you to supply the passphrase for your
own secret key. Typing the passphrase
returns you to the internal prompt where
you can type quit. Make sure that you
confirm when prompted to save your

changes; gpg will not save the third party
key with your signature attached, unless
you do.

Of course, none of this is of much
use, unless the signature is published,
because other mail users who know the
signer – that is, you – but do not know
the key owner, will base the trust they
place in the key on the trust relationship
between the signer and the keyholder.

The signer has the option of re-exporting
the signed key and sending it back to the
owner (and placing the burden of
distributing the key on the owner), or
using gpg --send-keys “name” to upload
the signature to the key-server. You
can then type gpg --refresh-keys to up-
date your keyring – and make your bid
for a place in the Top 1000 of the Web of
Trust [2]. ■

[1] Automating the Challenge Response
Process: http://www.lysator.liu.se/~jc/
verifygpgmail.sh

[2] Top 1000:
http://skylane.kjsl.com/~jharris/ka/
2003-07-27/top1000table.html

INFO

webmistress@fri:~$ gpg --edit pjung@linux-user.de
gpg (GnuPG) 1.2.1; Copyright (C) 2002 Free Software Foundation, Inc.
This program comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it
under certain conditions. See the file COPYING for details.

Secret key is available.

pub 1024D/1E786A45 created: 2003-01-17 expires: never trust: u/u
sub 2048g/62D4F0F4 created: 2003-01-17 expires: never
(1) Patricia Jung <pjung@linux-user.de>
(2) Patricia Jung <pjung@linux-magazin.de>
[...]
(5). Patricia Jung <pjung@linux-magazine.com>

Command> 1
pub 1024D/1E786A45 created: 2003-01-17 expires: never trust: u/u
sub 2048g/62D4F0F4 created: 2003-01-17 expires: never
(1)* Patricia Jung <pjung@linux-user.de>
(2) Patricia Jung <pjung@linux-magazin.de>
[...]
(5). Patricia Jung <pjung@linux-magazine.com>

Command> sign
pub 1024D/1E786A45 created: 2003-01-17 expires: never trust: u/u
Primary key fingerprint: 2350 B799 81E8 B20B 3743 D541 CA1E C447 U

1E78 6A45

Patricia Jung <pjung@linux-user.de>

How carefully have you verified the key you are about to sign actuallyU
belongs
to the person named above? If you don't know what to answer, enter "0".

(0) I will not answer. (default)
(1) I have not checked at all.
(2) I have done casual checking.
(3) I have done very careful checking.

Your selection? 3
Are you really sure that you want to sign this key
with your key: "Webmistress <webmistress@answergirl.de>"

I have checked this key very carefully.

Really sign? y
You need a passphrase to unlock the secret key for
user: "Webmistress <webmistress@answergirl.de>"
1024-bit DSA key, ID 2F0F137E, created 2003-04-28
secret passphrase of your own secret key
Command> quit
Save changes? y

Listing 2: Signing a third party key

