
Programmers, and above all their
clients, are always interested in
quick results. The need to work on

parallel projects, and tight deadlines hit
Web developers in particular. Thus pro-
fessional developers look to spending
more time on tackling the task in hand,
rather than churning out auxiliary func-
tions. PHP [2] supports this aim in many
areas application development, but un-
fortunately not many people know that.
And this is something I intend to set
straight with the current article.

The idea behind Pear, the PHP Exten-
sion and Application Repository [3]
arose in parallel with the release of PHP
4 in 1999. Many programmers view this
as analogous to CPAN for Perl. But
where CPAN provides quantity rather
than quality, the PHP class library main-
tainers have clearly focused on the
quality of their collection. As of PHP
4.3m, Pear left the beta development
stage and is now an essential component
of any Linux distribution that includes
PHP.

Package Browser Shows
Application Categories
In PHP-speak components are referred to
as packages. They are organized in a tree
by application category, an underscore

and name. The so-called package
browser [4] on the Web shows this tree
structure (see Figure 1).

This article shows the practical ca-
pabilities of Pear, using the QuickForm
package as an example. QuickForm facili-
tates the use of forms, the major
interface to the user and a mandatory
aspect of Web applications. QuickForm
has been assigned to the HTML cate-
gory and can thus be located under

Like many other languages, the PHP

Web scripting language abounds

with pre-fabricated components. In

the following article we will be look-

ing at practical applications using

form management as an example.

BY RICHARD SAMAR

Using PHP Components

Forms to the Max

25www.linux-magazine.com October 2003

HTML_QuickForm. As discussed previ-
ously, you can use the browser to
ascertain the field of application, ver-
sion, changelog, download statistics and
dependencies on other packages.

Installing Pear & QuickForm
If PHP 4.3 or later is installed on your
system, you can safely assume that Pear
is, too. In this case, no installation steps
are required. In rare cases where PHP

COVER STORYPHP Web Forms

ration file will reveal whether the entries
are pointing at the correct directories.

Displaying Installed Packages
in the Shell
The pear list command shows a list of
installed packages in the shell:

$pear list
Installed packages:
===================
Package Version State
Archive_Tar 0.9 stable
Console_Getopt 1.0 stable
DB 1.3 stable

You can type pear install HTML_
QuickForm to automatically install the
package in the shell. If your Internet con-
nection was down at the time, you can
use the Package browser as follows to
retrieve the required package, resolve
any dependencies, HTML_Common in
this case, and install the collection:

$ pear install /Path/to/DownU
load/HTML_Common-1.2.1.tgz

install ok: HTML_Common 1.2.1
$ pear install /Path/to/DownU
load/HTML_QuickFrom-3.0.tgz
install ok: HTML_QuickForm 3.0

Then type pear list again to display the
installed packages. You can later enter
pear upgrade-all periodically to update
any packages you have installed. pear
uninstall followed by the package name
will uninstall a package. And if you
are interested in even more detail on
the general Pear configuration, typing
pear config-show will provide that in-
formation.

HTML_QuickForm in Action
The PEAR::HTML_QuickForm package –
note the typical naming convention with
the colon – provides functions for
creating, validating, and handling HTML
forms. It is easy to manage and at
the same time extremely flexible. In
addition to simple output facilities, the
package also provides interfaces for well-
known PHP template engines such as
Smarty [5].

has been explicitly configured and
compiled --without-pear, admins will
need to re-compile PHP without the
option set.

If your distribution still uses an older
version, you can use a workaround – as
an alternative to a PHP update – to
acquire the Pear package installer, which
is essential for package setup tasks. To
do so, open up a connection to the Inter-
net and enter the following in a shell:

lynx -source http://go-pear.orgU
| php

This line downloads a PHP script, runs
the script and takes care of everything
else automatically.

The so-called include_path in the PHP
configuration file (typically in /etc/php.
ini) has to be set correctly to avoid
problems when including Pear compo-
nents. If PHP is installed in /usr/local,
Pear will typically be set up in /usr/
local/lib/php/.

If you do need to troubleshoot an
installation, a quick look at the configu-

26 October 2003 www.linux-magazine.com

PHP Web FormsCOVER STORY

01 <?php
02 require_once
'HTML/QuickForm.php';
03
04 // Show QuickForm version
05 print 'PEAR::HTML_QuickForm
Version ';
06 print
HTML_QuickForm::apiVersion() .
'

';
07
08 $myForm = new
HTML_QuickForm('EmailFormular',
'POST');
09 $myForm->addElement('header',
'', 'Personal Data');
10
11 $myForm->addElement('text',
'textName', 'Surname:');
12 $myForm->addElement('text',
'textFirstname', 'First name:');
13 $myForm->addElement('text',
'textEmail', 'Email:');
14 $myForm->addElement('submit',
'submitButton','Submit data');
15
16 $name =& $myForm-
>getElement('textName');

17 $name->setMaxLength(30);
18 $name->setSize(30);
19
20 $vname =& $myForm-
>getElement('textFirstname');
21 $vname->setMaxLength(20);
22 $vname->setSize(30);
23
24 $email =& $myForm-
>getElement('textEmail');
25 $email->setMaxLength(50);
26 $email->setSize(30);
27
28 // Add validation rules
29 $myForm->addRule('textName',
'Please enter surname',
'required');
30 $myForm-
>addRule('textFirstname',' Please
enter first name', 'required');
31 $myForm->addRule('textEmail',
'Please enter email address',
'required');
32 $myForm->addRule('textEmail',
'Email invalid', 'email');
33 $myForm->addRule('textEmail2',
'Please enter email',
'required');

34 $myForm->addRule('textEmail2',
'Email invalid', 'email');
35
36 // Client-side validation
using JavaScript also possible
37 // $myForm-
>addRule('textEmail', 'Email
invalid', 'email', NULL,
'client');
38
39 // Freeze form if validation
OK
40 if ($myForm->validate())
41 {
42 print 'Thank you! Your data
is as follows:';
43 $myForm-
>removeElement('submitButton');
44 $myForm->freeze();
45 }
46
47
48 // Display form
49 $myForm->display();
50
51 ?>

Listing 1: emailformular.php

Listing 1 shows a short
example. The Pear package
uses an object oriented pro-
gramming approach, as is
typically the case. The sam-
ple form prompts the user
to input a family name, first
name and email address.
Validation is performed
to prevent faulty data input
– everyday programming
experience shows that care-
ful validation pays, even for
the most simple of struc-
tures.

The require_once ‘HTML/
QuickForm.php’ construc-
tion in line 2 includes the
required Pear package. An
absolute pathname is not
required at this point, as
PHP will automatically
search the previously configured include
_path. This again reflects the structure of
Pear: QuickForm occupies a position
below HTML in the hierarchy, and HTML
is a physical directory.

This is a so-called static
method, something that
most developers using an
object oriented language
will be familiar with: When
you use a double colon
operator to call a method of
this class, no initialization
is required.

Two parameters are
passed to the constructor in
line 8: EmailFormular iden-
tifies the form and will later
be used as the name of the
form in the HTML code.
POST specifies the HTTP
POST method for transmit-
ting the data.

Other parameters and
switches could have been
included if required. A
third parameter could be

used to specify the target document to be
generated, for example. As in this case
the parameter has been omitted, the
current document will be assumed as
the target.

COVER STORYPHP Web Forms

Figure 1: In PHP-speak components are known as packages. The web based pack-
age browser shows the packages in a tree view, sorted by application category

A Profusion of Functions
The QuickForm API is wide-ranging and
extremely functional, especially as of
version 3. Thus it makes sense to output
the apiVersion() in line 6.

advertisement

• radio
• select
• text
• textarea
You typically need to
specify the length of
the fields in an input
form. Developers can
use the getElement(),
which returns a reference
to each element, and
assigns it to the corre-
sponding variable, to do so. In our
example, lines 16 through 26 set the visi-
ble length of all fields to 30 characters,
although the maximum lengths are dif-
ferent.

Field Validation On-the-Fly
It is quite simple to validate user input
thanks to QuickForm. The Method
addRule() method allows you to assign
an arbitrary number of rules to each ele-
ment. Elements are identified by unique
names.

Validation facilities are extremely com-
prehensive, so the method has a lot of
optional parameters. Lines 29 through 34
in Listing 1 demonstrate an extremely

simple case, passing the error text as
the second, and the validation type as
the third parameter. Table 1 shows an
overview of major validation types (see
Table 1). Depending on the type, the pro-
grammer must pass either nothing, a
numerical value, or a regular expression
to the addRule() method, as a fourth
parameter.

Our example implements server-side
field validation. The comment in line 37
also indicates the possibility to perform
client-side validation using Javascript.
The if instruction then uses validate() to
check whether each field has been suc-
cessfully validated. It so, validate()
returns TRUE and freezes the whole

A Header and Text Boxes
A header, like the one in line 9, is useful
to more easily identify the document,
and it makes for neater forms. This is fol-
lowed by three elements of the text form
type, which any Web browser will render
as HTML text boxes. The second para-
meter identifies the element, whereas
the third specifies the text that will
appear next to boxes on the Website –
this is referred to as a label. The follow-
ing element types are available in
addition to the Submit button shown in
line 14:
• checkbox
• image
• hidden
• password

28 October 2003 www.linux-magazine.com

PHP Web FormsCOVER STORY

Listing 2: creditcard.php
01 <?php
02 require_once
'HTML/QuickForm.php';
03
04 // Template for header
05 $headerTemplate = '<tr><td
style="white-space: nowrap;
background-color: blue;"
align="center" ';
06 $headerTemplate .=
'valign="top" colspan="2"><font
size="5"
color="yellow">{header}</t
d></tr>';
07
08 // Template for text fields
(card holder and number)
09 $elTemplate = '<tr><td
align="right" valign="top">';
10 $elTemplate .= '<!-- BEGIN
required -->#<!--
END required --
>{label}</td>';
11 $elTemplate .= '<td
valign="top" align="left"><!--

BEGIN error -->';
12 $elTemplate .=
'{error}
<!-- END
error -->{element}</td></tr>';
13
14 // Instantiate form
15 $myForm = new
HTML_QuickForm('CreditcardForm',
'POST');
16 // new text for mandatory
fields
17 $myForm-
>setRequiredNote('#
mandatory fields');
18
19 // Add header and set new
template
20 $myForm->addElement('header',
'', 'Creditcarddata');
21 $myForm-
>setHeaderTemplate($headerTemplat
e);
22
23 // Add text fields and set new

template for each
24 $myForm->addElement('text',
'textCardholder',
'Cardholder:');
25 $myForm->addElement('text',
'textCardnumber', 'Cardnumber:');
26 $myForm-
>setElementTemplate($elTemplate,
'textCardholder');
27 $myForm-
>setElementTemplate($elTemplate,
'textCardnumber');
28
29 // Array for credit card types
30 $cardtypes = array('visa' =>
'VISA', 'master' => 'EuroCard',
'amex' => 'American Express',);
31 // Drop-down menu for credit
card types
32 $myForm->addElement('select',
'selectCardtypes', 'cardtype:',
$cardtypes);
33
34 // Arrays for months and years
35 $months = array (
36 '01' =>

Entry Meaning
required The field must be filled
maxlength Maximum length of field
minlength Minimum length of field
email Valid email address
lettersonly The entry must comprise only letters
numeric The entry must comprise only numbers
regex The entry must match a regular expression

Table 1: addRule()
validation types

Figure 2: Validating email fields is a simple task, thanks to Quick-
Form. Mandatory fields are specified as such, and erroneous input
generates a matching error message

form. The freeze() feature shows the
data entries, without allowing them
to be edited.

This is practical after completing
data entries, as it allows the user
to create a hard copy. The Submit
button is removed within the if state-
ment, as it would make no sense to
keep displaying the button after data
entry has been successfully com-
pleted. The most important method
finally occurs in line 49: display() is
required to output the form. Figure 2
shows the results of all this effort,
with and without errors.

More Flexibility
The functionality provided by Listing
1 is okay as far as it goes, but the
appearance of the form (Figure 2) is
definitely nothing to write home
about. Additionally, you might prefer
to use customized rather than stan-
dard messages. This is easily done
thanks to the high degree of flexibility
that QuickForm provides, as another
example in Listing 2 shows. This creates
a simple form for credit card data input.
Developers can use templates to modify

the color, form and order of the individ-
ual form elements to their liking. These
templates are defined in two string vari-
ables, for the header and the two text

boxes, at the start of Listing 2. The
strings in the curly brackets define
the text part of the current element
and can be placed anywhere. For
text fields, {label} indicates the
name, such as Cardholder, and {ele-
ment} the text field itself. Areas
enclosed in HTML comments con-
tain the error messages for the
mandatory fields, and symbols. In
the latter case the red asterisk is
replaced by a blue diamond.

As a form is embedded in a table
by default, you only have to ensure
that the internal table tags are set
correctly. However, you might
conceivably use a form template
without a table. The setRequired
Note() method in line 17 replaces
the standard messages, with cus-
tomized messages. Additionally,
setHeaderTemplate() and setElement
Template() register the defined tem-
plates with the elements.

Dropdown Menu Items
Stored in Arrays
Dropdown menus (element type select)
are defined as values in appropriate

29www.linux-magazine.com October 2003

COVER STORYPHP Web Forms

Figure 3: QuickForm is extremely flexible when it comes to
arranging fields, assigning labels and colors. Templates can
be used to fulfill almost any requirements

Listing 2: creditcard.php
'January', '02' => 'February',
'03' => 'March',
37 '04' =>
'April', '05' => 'May',
'06' => 'June',
38 '07' => 'July',
'08' => 'August', '09' =>
'September',
39 '10' =>
'October', '11' =>
'November','12' => 'December'
40);
41 $years = array ('2003' =>
'2003', '2004' => '2004', '2005'
=> '2005');
42
43 // Create group elements for
months and years
44 $validTo[] =
&HTML_QuickForm::createElement('s
elect', 'selectValidMonth', NULL,
$months);
45 $validTo[] =
&HTML_QuickForm::createElement('s
elect', 'selectValidYear', NULL,
$years);

46
47 // group elements create for
months and years
48 $myForm->addGroup($validTo,
'validToGroup', 'Valid to:');
49
50 // Add Submit button
51 $myForm->addElement('submit',
'submitButton','Submit Data');
52
53 // Credit card number have 16
digits
54 $cardnumber =& $myForm-
>getElement('textCardnumber');
55 $cardnumber->setMaxLength(16);
56
57 // Validation rules: The two
text fields must be occupied
58 // Credit card number must be
numeric and comprise 16 digits
59 $myForm-
>addRule('textCardholder',
'Please enter cardholder',
'required');
60 $myForm-
>addRule('textCardnumber',

'Please supply card number',
'required');
61 $myForm-
>addRule('textCardnumber',
'Invalid card number',
'numeric');
62 $myForm-
>addRule('textCardnumber', 'Card
number too short', 'minlength',
16);
63
64 // Freeze form if validation
succeeds
65 if ($myForm->validate())
66 {
67 $myForm-
>removeElement('submitButton');
68 $myForm->freeze();
69 }
70
71 // Display form
72 $myForm->display();
73
74 ?>

These individual elements do not con-
tain labels, and this is why the third
parameter in the static method
createElement() is NULL. A label is
specified for the whole group in line
48 using addGroup(); the array will
be the first parameter passed to it.
The remaining instructions are as in
Listing 1.

Simple Examples
As there is no need to write client soft-
ware and a Web browser is available for
nearly every operating system, more and
more programmers are adopting the
server-based Web application approach
to application development.

Operating costs are also calculable,
as software maintenance costs and the
like are lower than for traditional
client/server solutions, due to the fact
that the software only needs to be
updated server-side.

Both PHP examples shown here are
quite simple, but they do show that Web
applications are both simple to develop
and at the same time easy to harden
against erroneous input. Workflow man-
agement systems are a typical
application that involves a mass of
forms, and a perfect field of application
for QuickForm. The library introduced in
this article provides a large range of
additional functions suited to various
fields of application, such as processing
file uploads, custom enhancements, spe-
cialized callback functions or intelligent
filters for form input fields.

But QuickForm is not the only library
that Pear provides to facilitate the pro-
grammer’s task. Credit card data
transfer, which one could envisage as an

extension to the second example, is typi-
cally handled by HTTP or Soap. Again
there are Pear packages that reduce this
process to just a few lines of code, and
save developers a lot of effort imple-
menting standard protocols. Thanks to
Pear, there is no need to re-invent the
wheel for every application field you
venture into. ■

areas in lines 30 through 41. The $card-
types area is the fourth parameter of
addElement() in line 32. This mecha-
nism makes it possible to add new
values quickly at a later date without
sacrificing readability. The QuickForm
package also supports groups, where the
individual elements are positioned adja-
cently to one another. In the case of the
credit card form (see Figure 3), it makes
more sense to organize the validity data
– that is the combination of the months
and years that form the date – in this
way.

To do so, lines 44 and 45 add two
dropdown menus to the $validTo[] array.

30 October 2003 www.linux-magazine.com

PHP Web FormsCOVER STORY

Richard Samar,
http://richard-samar.
de, is a freelance IT
consultant who lives
near Frankfurt,
Germany. He has
been a PHP enthusi-
ast for many years,
and is well-known in the German PHP
Community.

TH
E A

UT
HO

R

[1] Listings for this article:
http://www.linux-magazin.de/Service/
Listings/2003/09/PHP

[2] Official PHP Website:http://www.php.net
[3] Official Pear Website:http://pear.php.net
[4] Pear Package Browser:

http://pear.php.net/packages.php
[5] Smarty Template Engine:

http://smarty.php.net/
[6] Protocol of the 2003 Pear Meeting:

http://pear.php.net/news/
meeting-2003-summary.php

INFO

These high-quality packages are subject to
stringent quality control measures.When
new features are added, or an implementa-
tion needs changing, these changes are
discussed by a team of experienced develop-
ers using a mailing list.
Pear packages comply with a coding stan-
dard that precisely defines how developers
should program, which includes how to
indent code, assign variable names, and
many other aspects.These stringent rules
allow both Pear developers and newcomers
to the language to quickly grasp the source
code.

Also, there is a requirement to provide good
documentation for code.Thanks to this stan-
dard, API documentation for the package
can be created automatically. And it is for
this reason that the Pear website at [3] con-
tains a whole bunch of descriptions of this
type.
Many Pear package authors are well-known
and respected members of the developer
community who also contribute to other
parts of PHP.To find out how much blood,
sweat and tears goes into producing quality
code, just read the minutes of the last Pear
Meeting [6].

Quality with a Capital Q

PHP is an extremely universal language
which can easily integrate programming
libraries and thus implement interfaces to
databases, graphics tools, XML parsers and
many other things.
The more popular PHP became, the more
work the Community started putting into
the development of extensions – this is one
of the more obvious advantages of Open
Source! But to keep the footprint of the PHP
distribution to a reasonable size, only the
most important and frequently used exten-
sions are supplied with PHP by default.

What is Pear, what is PECL?
With such a large range of extensions avail-
able, you have to put some effort into
promoting your library.This is why the initia-
tor of Pear, Stig Saether Bakken, distributes
pears, and pickles to the attendees of his
Pear keynotes and workshops. Although this
duo’s culinary virtue is debatable, it does
draw the audience’s attention to the names
Pear, and PECL (say pickle). PECL, an acronym
for PHP Extension Code Library, comprises a
subset of Pear and contains PHP extensions
programmed in C.
If you are looking for more exotic exten-
sions, to support the Open Source clone of
Microsoft .NET framework, Mono, you
should investigate PECL.The installation is
handled by the package installer, as is the
case for any other Pear package. In the case
of PECL packages, ensure that any ensuing
system dependencies are resolved. If you are
installing the Mono package, you will of
course need the Mono Framework itself.

Pears and Pickles for free

Developers tend to be finicky and untrust-
ing of other people’s code.This is why many
developers view Pear with some degree of
scepticism. But this kind of resistance to the
PHP class library is unjustified. If you trust
PHP, you should also be prepared to trust
the quality of Pear – at least the stable pack-
ages of the Pear Foundation Classes (PFC).

No Need for Scepticism

