Zack’s Kernel News

® Real-time real soon

Frederic Rossi has written AEM (Asyn-
chronous Event Mechanism), which
aims to provide native support for asyn-
chronous events within the Linux kernel.
AEM is intended to address the needs of
certain programs for real-time responses
to system events. The AEM tool-set
exists as one core module and several
satellite modules that may be loaded and
unloaded at will, to provide a variety of
features.

The aem-sched module, for instance,
alters the default process scheduler algo-
rithm, to allow event priorities to play a
part in the scheduler decision. Originally
written for the 2.4 kernel tree, the 2.6
version of AEM falls a little behind the
original code. In particular, at the time of
writing this article the aem-sched mod-
ule is not yet ready for use in the 2.6
kernel tree.

In theory, it should be possible for any
user to write their own satellite AEM
module, to suit their particular needs;
though at the moment no documentation
exists that describes how to do this. The
history of attempts at real-time perfor-
mance for Linux has been fraught with
controversy, although it appears that by
now most of those debates have sub-
sided.

Initially it was thought by many that
Linux was not suited to real-time soft-
ware needs, and would never be able to
support the fine-grained control needed
for some applications, such as software
intended to control sophisticated med-
ical machinery, or many multi-media
applications.

But through the work of Robert Love
and others over the years, the kernel has
become much better at being able to
guarantee a certain amount of CPU time
to those processes that need it. Quite a
bit of work still remains however, and a
wide array of developers appear to be
tackling the issue from many different
angles. Much of the work on real-time
features has already gone into the 2.6
kernel tree.]

® End of Kcore

The /proc/kcore interface into system
RAM may be going away in 2.6, as it
appears that not many people use it, and
it is very hard to maintain across multi-
ple architectures. Russell King,
maintainer of the ARM Linux port, for
example, announced in August that he
would no longer even try to support
/proc/kcore on that architecture, due to
the terrible ugliness of the code.

And Linus Torvalds was the first to
suggest removing it altogether, since it
had a history of breaking after various
kernel infrastructure updates. As he
pointed out on the linux-kernel mailing
list, there had been very few complaints
about those breakages, which indicated
that almost no one ever used the inter-
face.

In fact, it turns out that some develop-
ers do use it to peek into system memory
for debugging purposes, though most of
those folks say they would rather have a
native, fully featured compiler like kgdb
built into the kernel, instead of just a big
block of RAM to sift through.

Even Alan Cox feels that this would be
a good thing; but historically Linus has
resisted all attempts to get a kernel
debugger included in the official source
tree, on the grounds that debuggers are
too often used as a way around truly
understanding a given problem. By
allowing developers to rely too much on
tools like kgdb, Linus fears that the qual-
ity of the code will actually suffer,
because developers will end up submit-
ting patches that they themselves don’t
fully understand, just because they
appear on the surface to fix a bug.

Linus, however, is apparently in a very
small minority of developers that believe
this. The vast majority, it seems, feel that
a kernel debugger provides a very useful
tool for tracking down hard-to-uncover
problems.

If /proc/kcore is removed from the
kernel, it may be even more difficult for
developers to perform run-time debug-
ging tests.]

m November 2003 = www.linux-magazine.com

m

The Kernel Mailing List comprises the core of
Linux development activities. Traffic volumes
are immense and keeping up to date with
the entire scope of development is a virtually
impossible task for one person. One of the
few brave souls that take on this impossible
task is Zack Brown. ;

Our reqular monthly
column keeps you up
to date on the latest
discussions and
decisions, selected and
summarized by Zack.
Zack has been
publishing a weekly
digest, the Kernel Traffic Mailing List for
several years now, reading just the digest
is a time consuming task.

Linux Magazine now provides you with
the quintessence of Linux Kernel activities
straight from the horse’s mouth.

® Kernel options

One of the oldest controversies in Linux
history has finally been put to rest.
Randy Dunlap has coded up a feature to
allow users to derive a kernel’s .config
file from the kernel binary itself. There
have always been users who have balked
at their inability to figure out the config-
uration options a particular kernel was
compiled with.

Either they had got the kernel binary
from a vendor who did not include the
.config in the distribution, or else they’d
compiled it themselves but never kept
the .config file, and then one day found
themselves unable to reproduce the
functionality achieved by that kernel. If
only they had the .config file, they could
figure out why one kernel worked, and
the other did not!

Many patches have been written and
submitted to Linus Torvalds over the
years, but until this past August, none
had been accepted. One reason was that
such a feature was not considered to be
strictly necessary, since users could theo-
retically keep track of their .config files
by hand; and so a feature to do that for
them could be considered bloat. Another
was that it was actually trivial for a user
to append a .config to a kernel binary
and retrieve it at need, without causing
any ill effects at run-time.

Apparently not everyone thought the
feature was completely unnecessary
however, and first Dave Jones, and then

Alan Cox accepted Randy’s patch into
their personal trees for about five
months before Linus finally took it into
the 2.6-test tree.

The patch saves not only the configu-
ration information, but also information
on the compiler and host machine that
were used to compile that kernel. This
information should be sufficient to
rebuild the target kernel precisely.

When he first submitted the patch in
March of 2002, the interface was some-
what stripped down, with no interface in
the /proc filesystem. By the time of its
acceptance, however, it supported two
/proc files, as well as a standalone pro-
gram for retrieving its data from the
kernel.

It seems that, rather than Randy’s
patch addressing some fundamental
objection of folks like Alan and Linus, it
is more likely that Alan and Linus’ atti-
tude toward this kind of feature has
changed, making it more acceptable in
any form. []

® Maintaining CramFS

The CramFS filesystem is in need of a
new maintainer. Daniel Quinlan is still
officially the maintainer of the com-
pressed filesystem, but he would prefer
to step down, and is only waiting for a
suitable replacement to turn up.

Together with zisofs and SquashFS,
these three filesystems provide read-only
filesystem compression under the Linux
operating system.

SquashFS, a much newer project than
either of the other two, appears to have
significant advantages, so CramFS is not
quite so hotly desired by users as it once
was.

CramFS was the original inspiration
for the SquashFS project, and SquashFS
has managed to improve on a number of
CramFsS features, including the compres-
sion algorithm itself. But the search for a
fully-featured compressed filesystem is
ongoing.

As of writing this article, a compressed
filesystem with read/write capabilities is
still unavailable in Linux, and is likely to

advertisement

pose significant problems for any devel-
opers who are considering attempting it.

Since data compression relies on
abbreviating the patterns found within
the full array of the data being com-
pressed, achieving an efficient com-
pression ratio would involve uncom-
pressing and recompressing the entire
data-store for each disk-write performed
by the user.

While this is generally acknowledged
to be a prohibitively slow operation, it is
feasible to accept a somewhat lower
compression ratio, by applying the com-
pression algorithm only to new data, and
thus appending that new data to the
existing filesystem store. This method
would sacrifice space to gain speed, and
appears to be the best chance of true
read-write capabilities on a compressed
filesystem.

CramFS does not appear to be moving

in that direction, however, while
SquashFS does seem to be the best hope
in this area. []

