
protocol might have avoided (see “Vul-
nerabilities”).

Installation
Version 1.0 stable of Tinc has just been
released (under the GPL). This version is
compatible to Tinc 1.0pre8, but not to
older versions. To compile Tinc you will
need OpenSSL (0.9.7), a current gettext
package (0.12), and the Zlib and LZO
libraries.

You can launch into the typical instal-
lation process:

./configure
make
make install

As the installation is quite difficult, espe-
cially on Red Hat Linux 9, you might like
to download the RPM packages I created
for this distribution from [2].

Tinc uses either the ethertap driver
(Linux 2.2) or the universal TUN/TAP
driver (Linux kernel 2.4 or later, Figure 1)
to communicate with the Linux kernel. It
is easy to check whether your current

kernel supports this driver.
modinfo tun should output
the path to the module.

Tinc also runs on FreeBSD,
OpenBSD, NetBSD, Solaris,
and MacOS X, as well as
Windows. The latter uses the
Cipe driver, which runs on
both Windows 2000 and XP
– older Windows versions
will need a Cygwin environ-
ment.

Digging Tunnels
In contrast to other VPN
implementations, the admin

Tinc [1] has quite a few things going
for it as an alternative to the ubi-
quitous FreeS/WAN: You do not

need to patch the kernel as the program
runs in userspace. It uses very simple
configuration files making it easy to
avoid errors. Tinc can also tunnel and
thus protect non-IP traffic: you can use
this technique to tunnel any Ethernet
frame that can be encapsulated in IP. In
contrast to this Freeswan can only pro-
tect IPv4 packets. Finally, Tinc has an
extremely small footprint and does not
waste host resources; the
executable is a mere 80
KBytes.

Unfortunately, there is a
downside to Tinc; it does not
use a standard protocol and
this often prevents interoper-
ability between different
operating systems, although
native Win32 support was
introduced with version 1.0.
Userspace encryption takes
longer than a comparable
kernel feature. In the past the
protocol has been prone to
security holes that a standard

Tinc is a VPN daemon that can tunnel

complete networks without modify-

ing the kernel. Admins will

particularly appreciate its simple

installations, especially when faced

with large-scale VPN installations:

Tinc achieves far quicker integration

of additional nodes than FreeS/WAN.

BY RALF SPENNEBERG

Tinc, the Userspace VPN Daemon

Own a Private Network

50 November 2003 www.linux-magazine.com

TincKNOW HOW

Figure 1: For the Linux 2.4 kernel, you need to enable Universal TUN/TAP device
driver support below Network device support. This module is typically enabled

itself, when using Tinc does not define
the tunnel but just its endpoints. This
considerably simplifies the configuration
process, as you would otherwise need to
define six tunnels to support four end-
points, for example. Tinc does not
distinguish between clients and servers:
every Tinc daemon runs simultaneously
in both client and server mode.

The configuration file, /etc/tinc/tinc.
conf, as shown in Listing 1, is the basis
for the VPN shown in Figure 2. You also
need to create a file in /etc/tinc/hosts/ for
each name specified here (Berlin, Paris,
and London). For example, /etc/tinc/
hosts/Berlin would contain the following
two lines:

Address = berlin.spenneberg.org
Subnet = 192.168.2.0/24

The Address entry specifies the DNS
name or IP address of the Berlin host.
Subnet defines the network that will use
this endpoint to communicate across the
VPN. The VPN admin will need to create
an RSA keypair to allow the endpoints to
authenticate each other: tincd -K stores
the private key in /etc/tinc/rsa_key.priv;

the tool appends the public key to a file
below /etc/tinc/hosts/.

After authenticating the partner node,
Tinc creates a new network interface to
support VPN communications. The con-
figuration for this interface is stored in
the /etc/tinc/tinc-up file and contains the
following lines.

ifconfig $INTERFACE 192.168.U
0.1 netmask 255.255.0.0

The netmask is important here. It must
support all the networks that will com-
municate across the VPN – a kind of
supernetting.

After configuring all the hosts, creating
all the keys and exchanging /etc/tinc/
hosts/* files, the admin can now launch
tincd on the hosts. The order is not
important.

Peeking Behind the Curtains
Any tunnel that Tinc sets up comprises
of two connections that both use port

665 (TCP and UDP). As the developers
have registered this port with the IANA,
you can even use the following /etc/ser-
vices entries:

tinc 665/tcp TINC
tinc 665/udp TINC

Tinc relies on the UDP protocol to
exchange encrypted packets. It uses the
Blowfish algorithm (this is configurable)
with a 128-bit keylength in CBC mode
(Cipher Block Chaining). Tinc also uses
a 32-bit sequence number and a four
byte Message Authentication Code
(MAC, the code length is configurable).
The MAC is computed by applying the
SHA 1 algorithm to the packets. A com-
bination of the sequence number and
MAC protects the protocol from replay
attacks.

Before Tinc can start packet encryp-
tion, it needs to authenticate the partner
node and create symmetrical session
keys. This meta-information is ex-
changed across the TCP connection, and
this is why the Tinc documentation
refers to it as a Meta connection.

Conclusion
Tinc is a mature application that allows
admins to implement complex VPN sce-
narios quickly. Although interoperability
with some operating systems cannot be
guaranteed, Tinc is available for Linux,
many BSD variants, Solaris, MacOS X,
and Windows. ■

51www.linux-magazine.com November 2003

KNOW HOWTinc

In August 2000 a security hole was discov-
ered in Tinc’s key exchange routine.This
vulnerability affected Tinc versions up to and
including 1.0pre2, but has been patched
since.The tried and trusted OpenSSL library
now handles key exchanges, using 1024-bit
RSA keys to authenticate.
Jerome Etienne investigated Version 1.0pre4
of the Tinc protocol and disclosed his find-
ings on December 29 2001 [3]. He criticized
the lack of a sequence number and packet
authentication, which exposed Tinc to replay
attacks or packet manipulation.These vul-
nerabilities were fixed in version 1.0pre5. Just
like other VPN protocols (such as IPsec),Tinc
now uses sequence numbers and a Message
Authentication Code (MAC) that allows the
receiver to detect modified packets.

Also, Jerome noted that Tinc used an
extremely short (only 16-bit) random initial-
ization vector (IV).The IV is required in CBC
mode and should be as long and unique as
possible. As Tinc used a random number,
there was no way to guarantee the unique-
ness of the vector.The protocol now uses the
sequence number as the IV.The sequence
number has a 32-bit length and is unique
(within limits). Unfortunately, these changes
have meant that protocol versions prior to
1.0pre8 are incompatible to the current ver-
sion.
This goes to show that non-standardized
protocols often have design flaws. Luckily,
flaws are easily found and remedied in Open
Source products, and Tinc is a good example
of this.

Vulnerabilities

[1] Tinc: http://tinc.nl.linux.org
[2] RPM packages: http://www.spenneberg.

org/VPN/Tinc/
[3] Tinc security hole: http://www.off.net/

~jme/tinc_secu.html

INFO

Figure 2: Tinc provides for simple deployment of VPNs with multiple endpoints. To add a node, the
admin simple edits two configuration files

Name = Berlin
ConnectTo = London
ConnectTo = Paris
Device = /dev/net/tun
PrivateKeyFile =
/etc/tinc/rsa_key.priv

Listing 1: Tunnel Endpoints

