
files. A daemon processes the requests
and supplies information on those users.

If you want to use this service to pub-
lish information about yourself, you
create a file called .plan or .project in
your home directory. The main differ-
ence is that a .project file traditionally
consists of a single line, whereas a .plan
file provides you with more scope. The
.plan file is where you would store calen-
dar data or a PGP public key.

Security and the Finger
Service
Chapter 3 of RFC 1288 provides an usual
amount of detail on security aspects,
especially considering the fact that the
document is over ten years old (Decem-
ber 1991). Some of the more interesting
sections are still applicable to more mod-
ern forms of networks, such as dynamic
websites or web services.

When they receive a request, some fin-
ger servers call a user configurable
external program. The RFC says: “Im-
plementing this feature may be more
trouble than it is worth, since there are
always bugs in operating systems, which

could be exploited via this type of mech-
anism.”

Of course many developers and ad-
mins simply ignore this warning today,
keeping their Apaches with Mod_perl
and Mod_php, and solemnly swearing to
apply the appropriate security patches,
when they get round to it.

The finger daemon adds system data
to the information posted by a user, such
as the shell, the last login time, or even
information on unread mail. Listing 1
shows the results of a sample query fin-
ger Selig@localhost on my own host.

The daemon parses /etc/passwd for
the username. This is where it retrieves
the full name, and the user’s room and
phone numbers. These three snippets of
information are stored in the so-called
GECOS field. GECOS is the acronym 
for General Electric Comprehensive
Operating System, which was a fairly
widespread operating system around
1970. Although GECOS is insignificant in
retrospect, this field with its “human”
data migrated from GECOS to Unix and
retains the name to indicate its parent-
age. If you want to change this infor-
mation, you should call chfn (change fin-
ger), rather than editing the /etc/passwd
file directly.

Stop finger pointing
Finger allows end-users either to encour-
age other users to point (the finger
daemon) at them, or to prevent finger
access. You can create a file called .nofin-
ger in your home directory to reject the
BSD daemon typical to so many Linux
systems without any qualms. You can
also prevent finger activity more or less

Flexible working hours can be a pain
sometimes. You end up talking to
an answer phone while a colleague

is still enjoying breakfast, or has already
gone home. Some people simply pin
their schedules to their office doors,
which is quite useful, unless your office
happens to be in a completely different
part of your office building. There is a lot
to be said for groupware products if you
need to organize a meeting and co-ordi-
nate schedules for a group of colleagues.

Although this might surprise some
people, Outlook and co. were not the
first groupware products on the scene –
in fact, the finger protocol was originally
specified way back in 1977 [1]. Of
course, modern groupware applications
offer a lot more, but in many cases finger
is quite adequate. In addition, it tells you
a lot about the typical Unix philosophy.

How Finger Works
Finger’s basic design is wonderfully sim-
ple, you might even say primitive – and
thus, a perfect example of a client/server
service. Users on a system store informa-
tion about themselves in simple text

The finger service can be used to let other people know about your activities

and appointments, without having to launch a complex groupware applica-

tion. The protocol is amazingly simply – and that is one reason why we will be

using finger as our entrée into the world of Server administration.

BY MARC ANDRÉ SELIG

Part 2: Setting up and Using the Finger Server

Finger Pointing

56 December 2003 www.linux-magazine.com

Admin-Workshop: Finger ServerSYSADMIN

01 Login: mas Name: Marc
Andre Selig

02 Directory: /home/mas Shell:
/bin/bash

03 On since Mon Sep 8 11:20
(CEST) on pts/0 from :0

04 50 seconds idle
05 On since Mon Sep 8 16:49

(CEST) on pts/1 from :0
06 No mail.

07 Project:
08 I'm busy with an article for

Linux Magazine at present.
09 Plan:
10 This
11 is
12 my
13 .plan
14 it can contain more than just

one line.

Listing 1: Finger request



accidentally by assigning incorrect file
permissions. .plan and .project need to
be globally readable, and the daemon
expects at least look-up privileges for
your home directory (chmod 711 ~ and
chmod 644 ~/.plan).

The Daemon
The finger server is included with most
distributions, but not installed by de-
fault. In this case, you will need to add
the finger and finger-server packages. If
you are having trouble finding the pack-
age, you can search for bsd-finger to
locate the sourcecode.

Installing the server will not tell it 
to launch automatically. Linux distin-
guishes between two different categories
of server. One of them runs continuously
as a process, can react immediately to
incoming connections and assign re-
sources independently as required. But
finger belongs to the other category.
When required, the daemon is launched
by a central script called inetd (the so-
called Internet super-server) or xinetd,
allowing it to respond to current
requests.

The latter method has its advantages.
Servers are more simple to program,
more stable (as an instance is run for
each new request), and do not use any
resources while inactive.

You can check the /etc/inetd.conf
or /etc/xinetd.d/* files to find out
whether your distribution uses the tradi-
tional inetd or the more modern xinetd
approach. The finger entry in /etc/
inetd.conf (see Listing 2) is often pre-
configured, but disabled by the hash sign

#, at the start of the line. You can simply
delete the hash sign to enable the server.

inetd.conf reads like a table where
each line represents a specific service
that the Internet super-server enables.
The individual columns provide more
detail about the service.

Protocol Issues
The first column in the line contains the
name of the service. It is important to
inetd that this name uniquely identifies
the IP port. The operating system looks
in /etc/services to discover the port
assigned to the symbolic name.

The second column contains the
socket type: stream indicates a connec-
tion-oriented service; dgram (datagram)
a connectionless service. Connection ori-
ented services use a datastream to
exchange data and expect the protocol to
provide a reliable transport service. Con-
nectionless services simply transmit
individual packets that may go astray or
arrive in the wrong order.

To illustrate the difference you might
like to compare a phone call with a post-
card. In the case of a phone call, the
caller expects the conversation to be
transmitted without any omissions or
errors. In contrast to this, when you mail
a postcard, you simply drop it in the
mailbox and hope that it will arrive some
time. And you are not really surprised if
it does go astray.

The third column in /etc/inetd.conf
describes the protocol. This column typi-
cally contains either tcp for TCP/IP
(connection oriented) and udp for
UDP/IP (connectionless). This would
seem to make the column redundant at
first glance – but this is not true. Remem-
ber that TCP/IP is not the only protocol
family. Just like the service name, the
entry in the third column is again a sym-
bol that Linux will translate into a
number, by referring to the /etc/protocols
file.

To Wait or Not to Wait?
The fourth column tells inetd to wait for
the current instance of the server pro-
gram to terminate (wait), or not to wait
(nowait). In the latter case, inetd imme-
diately launches a new server process,
when it receives a request for the
service.

This may seem superfluous at first
glance, but it is an important decision.
The entry for the finger service is
nowait. In other words, when inetd
receives a request, it launches a finger
server. The server returns a response and
terminates. If inetd receives a second
request, while the first request is being
processed, it immediately calls a second
instance of the finger server, which then
handles the request.

This would be different for a connec-
tionless service. In this case, inetd
cannot know whether an incoming
packet belongs to the original request, or
if it should launch a second instance of
the server. Connectionless services typi-
cally expect a wait entry in this column.

The fifth column of inetd.conf contains
the name of the Unix user account that
inetd will run the service as. The super-
daemon does not automatically launch
each server as root; instead you can
specify the privileges assigned to the
server program.

Column six contains the path to the
server executable. Any following fields
contain command line arguments for the
server, where the first argument (argu-
ment number zero) repeats the name of
the program.

57www.linux-magazine.com December 2003

SYSADMINAdmin-Workshop: Finger Server

Even if you get the configuration right, and
everything works perfectly, finger can still
provide a potential attacker with a lot of
information about your network, the com-
puters on the network, their function, and
the social networks within your enterprise.
Who works when? On what? And with
whom? Which computers do not have any
user accounts?
Servers are typically well secured. A machine
with a whole bunch of user accounts is just
looking to be attacked. Machines with
masses of shells often reveal unexpected
security holes, although they may be
allowed quite generous access to a company
network.

Finger also tells you when system adminis-
trators are asleep or on vacation, and thus
unable to respond to attacks. Finger may
even show you the fill or stock levels of net-
work attached coffee machines, or coke and
confectionery vending machines.This in turn
tells you a lot about the staff’s attitude to
work.
All of this information can be obtained by
other means, but it would mean the attacker
putting more effort into footprinting.This is
the official reason for most sites doing with-
out finger today. However, the universal use
of web servers certainly plays an important
role in this area – often with far more serious
consequences than a straightforward tool
like finger.

Too much of a good thing?

finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd

Listing 2: The finger daemon in inetd



telnet localhost 79

The Telnet client will then output three
lines of data:

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Telnet has opened up a connection to
127.0.0.1 (that is localhost). The Escape
character is for the Telnet client. The
daemon is now waiting for individual
instructions. Try typing mas. The server
will interpret this search key both as a
Linux username and as a full name. Any
matches for these variants are returned
across the open TCP connection (see
Listing 1), which the daemon then
closes.

Is anyone there?
If you simply press [Return], rather

than typing an entry in the command
line, the finger daemon will return a list
of logged on users. Recursive requests
are also permissible. A recursive request
will tell the finger server to connect to
another finger server, and retrieve the
requested data from that server. This is

useful for firewalls. This
type of request uses the
User@Hostname format.
The technique even works
across multiple finger ser-
vers. You can use an @
sign to separate any addi-
tional hostnames in the
request.

Each finger command
line ends with CRLF (Car-
riage Return plus Line
Feed), which is typical of a
TCP connection. Although
Unix and Linux use a sim-
ple Line Feed to separate
newlines, nearly every TCP
based protocol uses CRLF.
The idea is to allow sys-
tems with different
architectures to talk to each
other, such as Windows
computer, which use CRLF
natively to keep things sim-
ple, or Apple Macintosh
machines that only use CR
as a newline character.

The end-of-line character
is referred to by various names in man-
pages and many how-tos. As you can
type a Line Feed by pressing [Control]+J
by default, you may see references to ^J.
C and related languages use \n. Newline
is shown hex 0x0a, or decimal 10, in
ASCII code. Carriage Return is referred to
variously as ^M and \r, hex 0x0d, or dec-
imal 13.

Finger without Fear
Before you actually run a finger server
on your network, make sure that you
read the “Security and the Finger Ser-
vice” insert. If you are familiar with
finger, you will know that you really
have nothing to fear – finger has a lot of
good points. ■

If your distribution uses
xinetd, it should have a
minimal configuration file
for finger /etc/xinetd.d/fin-
ger (see Listing 3). There
are no major differences in
the actual content, although
inexperienced users will
probably prefer the en-
hanced readability of this
format.

Any changes made to
/etc/inetd.conf or /etc/
xinetd.d typically apply
after re-starting the super-
server. You can kill -HUP
processID to parse and
apply its new configuration
at runtime.

The Finger Protocol
You do not need a protocol
analyzer to watch finger at
work on a network, in fact,
you do not even need a fin-
ger client. Instead, you can
simply direct finger to the
server using a simple Telnet
client. If you prefer to read the specifica-
tion, check out RFC 1288 [2] for the
current version.

The server runs on port 79, just one
below the HTTP port, 80. It uses a con-
nection oriented protocol, TCP/IP, for
transmissions, but not UDP/IP, which is
used by connectionless services, such as
DNS, NTP, or Syslog. To use finger, you
will need to lift any firewall or packet fil-
ter restrictions for port 79. You can easily
check the availability of the server by
typing netstat -tan | grep :79 – this
should produce at least one line of out-
put indicating that the TCP service on
port 79 is in the LISTEN state.

Type the following command to talk to
the daemon:

58 December 2003 www.linux-magazine.com

Admin-Workshop: Finger ServerSYSADMIN

[1] RFC 742, the original protocol specifica-
tion from 1977:
http://www.ietf.org/rfc/rfc742.txt

[2] RFC 1288, the current version of the finger
protocol specs:
http://www.ietf.org/rfc/rfc1288.txt

[3] Linux manpages as additional reference
material for this article: finger(1), in.fin-
gerd(8), chfn(1) and ascii(7).

INFO

service finger
{
socket_type = stream
wait = no
user = nobody
server = /usr/sbin/in.fingerd
disable = no
}

Listing 3: The finger
daemon in xinetd

Figure 1: If you want to add a finger request to your homepage, you can use a Web
interface to do so. As the protocol is extremely simple, it does not take long to
develop a front-end


