Part 2: Setting up and Using the Finger Server Finger Pointing

The finger service can be used to let other people know about your activities and appointments, without having to launch a complex groupware application. The protocol is amazingly simply - and that is one reason why we will be using finger as our entrée into the world of Server administration.

BY MARC ANDRÉ SELIG

Flexible working hours can be a pain sometimes. You end up talking to an answer phone while a colleague is still enjoying breakfast, or has already gone home. Some people simply pin their schedules to their office doors, which is quite useful, unless your office happens to be in a completely different part of your office building. There is a lot to be said for groupware products if you need to organize a meeting and co-ordinate schedules for a group of colleagues.

Although this might surprise some people, Outlook and co. were not the first groupware products on the scene in fact, the finger protocol was originally specified way back in 1977 [1]. Of course, modern groupware applications offer a lot more, but in many cases finger is quite adequate. In addition, it tells you a lot about the typical Unix philosophy.

How Finger Works

Finger's basic design is wonderfully simple, you might even say primitive - and thus, a perfect example of a client/server service. Users on a system store information about themselves in simple text
files. A daemon processes the requests and supplies information on those users.
If you want to use this service to publish information about yourself, you create a file called .plan or .project in your home directory. The main difference is that a .project file traditionally consists of a single line, whereas a .plan file provides you with more scope. The .plan file is where you would store calendar data or a PGP public key.

Security and the Finger Service

Chapter 3 of RFC 1288 provides an usual amount of detail on security aspects, especially considering the fact that the document is over ten years old (December 1991). Some of the more interesting sections are still applicable to more modern forms of networks, such as dynamic websites or web services.
When they receive a request, some finger servers call a user configurable external program. The RFC says: "Implementing this feature may be more trouble than it is worth, since there are always bugs in operating systems, which

Listing 1: Finger request

01 Login: mas Name: Marc	07 Project:
Andre Selig	08 I'm busy with an article for
02 Directory: /home/mas Shell:	Linux Magazine at present.
/bin/bash	09 Plan:
03 On since Mon Sep 8 11:20	10 This
(CEST) on pts/0 from :0	11 is
04 50 seconds idle	12 my
05 On since Mon Sep $816: 49$	13 .plan
(CEST) on pts/l from :0	14 it can contain more than just
06 No mail.	

could be exploited via this type of mechanism."

Of course many developers and admins simply ignore this warning today, keeping their Apaches with Mod_perl and Mod_php, and solemnly swearing to apply the appropriate security patches, when they get round to it.

The finger daemon adds system data to the information posted by a user, such as the shell, the last login time, or even information on unread mail. Listing 1 shows the results of a sample query finger Selig@localhost on my own host.

The daemon parses /etc/passwd for the username. This is where it retrieves the full name, and the user's room and phone numbers. These three snippets of information are stored in the so-called GECOS field. GECOS is the acronym for General Electric Comprehensive Operating System, which was a fairly widespread operating system around 1970. Although GECOS is insignificant in retrospect, this field with its "human" data migrated from GECOS to Unix and retains the name to indicate its parentage. If you want to change this information, you should call chfn (change finger), rather than editing the /etc/passwd file directly.

Stop finger pointing

Finger allows end-users either to encourage other users to point (the finger daemon) at them, or to prevent finger access. You can create a file called .nofinger in your home directory to reject the BSD daemon typical to so many Linux systems without any qualms. You can also prevent finger activity more or less
accidentally by assigning incorrect file permissions. .plan and .project need to be globally readable, and the daemon expects at least look-up privileges for your home directory (chmod 711 ~ and chmod 644 ~/.plan).

The Daemon

The finger server is included with most distributions, but not installed by default. In this case, you will need to add the finger and finger-server packages. If you are having trouble finding the package, you can search for bsd-finger to locate the sourcecode.

Installing the server will not tell it to launch automatically. Linux distinguishes between two different categories of server. One of them runs continuously as a process, can react immediately to incoming connections and assign resources independently as required. But finger belongs to the other category. When required, the daemon is launched by a central script called inetd (the socalled Internet super-server) or xinetd, allowing it to respond to current requests.

The latter method has its advantages. Servers are more simple to program, more stable (as an instance is run for each new request), and do not use any resources while inactive.

You can check the /etc/inetd.conf or /etc/xinetd.d/* files to find out whether your distribution uses the traditional inetd or the more modern xinetd approach. The finger entry in /etc/ inetd.conf (see Listing 2) is often preconfigured, but disabled by the hash sign

Listing 2: The finger daemon in inetd

finger stream tcp nowait nobody /usr/sbin/in.fingerd in.fingerd
\#, at the start of the line. You can simply delete the hash sign to enable the server.
inetd.conf reads like a table where each line represents a specific service that the Internet super-server enables. The individual columns provide more detail about the service.

Protocol Issues

The first column in the line contains the name of the service. It is important to inetd that this name uniquely identifies the IP port. The operating system looks in /etc/services to discover the port assigned to the symbolic name.
The second column contains the socket type: stream indicates a connec-tion-oriented service; dgram (datagram) a connectionless service. Connection oriented services use a datastream to exchange data and expect the protocol to provide a reliable transport service. Connectionless services simply transmit individual packets that may go astray or arrive in the wrong order.
To illustrate the difference you might like to compare a phone call with a postcard. In the case of a phone call, the caller expects the conversation to be transmitted without any omissions or errors. In contrast to this, when you mail a postcard, you simply drop it in the mailbox and hope that it will arrive some time. And you are not really surprised if it does go astray.

Too much of a good thing?

Even if you get the configuration right, and everything works perfectly, finger can still provide a potential attacker with a lot of information about your network, the computers on the network, their function, and the social networks within your enterprise. Who works when? On what? And with whom? Which computers do not have any user accounts?

Servers are typically well secured. A machine with a whole bunch of user accounts is just looking to be attacked. Machines with masses of shells often reveal unexpected security holes, although they may be allowed quite generous access to a company network.

Finger also tells you when system administrators are asleep or on vacation, and thus unable to respond to attacks. Finger may even show you the fill or stock levels of network attached coffee machines, or coke and confectionery vending machines. This in turn tells you a lot about the staff's attitude to work.
All of this information can be obtained by other means, but it would mean the attacker putting more effort into footprinting. This is the official reason for most sites doing without finger today. However, the universal use of web servers certainly plays an important role in this area - often with far more serious consequences than a straightforward tool like finger.

The third column in /etc/inetd.conf describes the protocol. This column typically contains either tcp for TCP/IP (connection oriented) and $u d p$ for UDP/IP (connectionless). This would seem to make the column redundant at first glance - but this is not true. Remember that TCP/IP is not the only protocol family. Just like the service name, the entry in the third column is again a symbol that Linux will translate into a number, by referring to the /etc/protocols file.

To Wait or Not to Wait?

The fourth column tells inetd to wait for the current instance of the server program to terminate (wait), or not to wait (nowait). In the latter case, inetd immediately launches a new server process, when it receives a request for the service.

This may seem superfluous at first glance, but it is an important decision. The entry for the finger service is nowait. In other words, when inetd receives a request, it launches a finger server. The server returns a response and terminates. If inetd receives a second request, while the first request is being processed, it immediately calls a second instance of the finger server, which then handles the request.

This would be different for a connectionless service. In this case, inetd cannot know whether an incoming packet belongs to the original request, or if it should launch a second instance of the server. Connectionless services typically expect a wait entry in this column.

The fifth column of inetd.conf contains the name of the Unix user account that inetd will run the service as. The superdaemon does not automatically launch each server as root; instead you can specify the privileges assigned to the server program.

Column six contains the path to the server executable. Any following fields contain command line arguments for the server, where the first argument (argument number zero) repeats the name of the program.

If your distribution uses xinetd, it should have a minimal configuration file for finger /etc/xinetd.d/finger (see Listing 3). There are no major differences in the actual content, although inexperienced users will probably prefer the enhanced readability of this format.

Any changes made to /etc/inetd.conf or /etc/ xinetd.d typically apply after re-starting the superserver. You can kill -HUP processid to parse and apply its new configuration at runtime.

The Finger Protocol

You do not need a protocol analyzer to watch finger at work on a network, in fact, you do not even need a finger client. Instead, you can simply direct finger to the server using a simple Telnet client. If you prefer to read the specification, check out RFC 1288 [2] for the current version.

The server runs on port 79 , just one below the HTTP port, 80. It uses a connection oriented protocol, TCP/IP, for transmissions, but not UDP/IP, which is used by connectionless services, such as DNS, NTP, or Syslog. To use finger, you will need to lift any firewall or packet filter restrictions for port 79. You can easily check the availability of the server by typing netstat -tan | grep :79 - this should produce at least one line of output indicating that the TCP service on port 79 is in the LISTEN state.

Type the following command to talk to the daemon:

```
Listing 3:The finger
    daemon in xinetd
service finger
{
    socket_type = stream
    wait = no
    user = nobody
    server = /usr/sbin/in.fingerd
    disable = no
```

\}

Y Finger mas@zpidsu3.zpid.de - Mozilla Firebird	$-\square \times$
Eile Edit View Go Bookmarks Tools Help	4
(3) - - is (i) http//Mww.mit.edu:8001/finger 7 Q	
\square Mozilla Firebird Help \square Mozilla Firebird Disc... \square Plug-in FAQ	
This is a searchable index. Enter search keywords:	

Finger mas@zpidsu3.zpid.de

Login name: mas
Directory: /home/mas
on since Sep 16 . $12: 16: 43$ on pts/3 from pd957b439. dip. t-dialin. net
No unread mail
Plan:
This
is
my
plan
it can contain more than just one line.
Connections that are refused ("connection refused") are usually a product of the system you
are fingering, not of our gateway. Contact the maintainers of the site you are trying to finger if
you get a connection refused. See our finger gateway FAO for more information. Note in
particular that AOL does not allow finger requests.
Otherwise, if you find a machine for which this finger presents confusing or misformatted
information, please please e-mail the full machine name to webmaster@mit.edu mentioning the
situation, and we'll do what we can to make things work nicely.

Done

Figure 1: If you want to add a finger request to your homepage, you can use a Web interface to do so. As the protocol is extremely simple, it does not take long to develop a front-end
useful for firewalls. This type of request uses the User@Hostname format. The technique even works across multiple finger servers. You can use an @ sign to separate any additional hostnames in the request.

Each finger command line ends with CRLF (Carriage Return plus Line Feed), which is typical of a TCP connection. Although Unix and Linux use a simple Line Feed to separate newlines, nearly every TCP based protocol uses CRLF. The idea is to allow systems with different architectures to talk to each other, such as Windows computer, which use CRLF natively to keep things simple, or Apple Macintosh machines that only use CR as a newline character

The end-of-line character is referred to by various names in manpages and many how-tos. As you can type a Line Feed by pressing [Control] + J by default, you may see references to $\wedge J$. C and related languages use $\backslash n$. Newline is shown hex 0x0a, or decimal 10, in ASCII code. Carriage Return is referred to variously as ${ }^{\wedge} M$ and $\backslash r$, hex $0 x 0 \mathrm{~d}$, or decimal 13.

Finger without Fear

Before you actually run a finger server on your network, make sure that you read the "Security and the Finger Service" insert. If you are familiar with finger, you will know that you really have nothing to fear - finger has a lot of good points.

INFO

[1] RFC 742, the original protocol specification from 1977:
http://www.ietf.org/rfc/rfc742.txt
[2] RFC 1288, the current version of the finger protocol specs:
http://www.ietf.org/rfc/rfc1288.txt
[3] Linux manpages as additional reference material for this article: finger(1), in.fin$\operatorname{gerd}(8), \operatorname{chfn}(1)$ and ascii(7).

