
PostScript::File and PostScript::TextBlock,
as [2] will tell you. PostScript is basically
just another programming language.
PostScript files are made up of readable
ASCII text and contain a list of the com-
mands needed to generate a printed
page.

Painting by Numbers
However, PostScript uses a so-called
mathematical coordinate system, and
this is slightly unusual for a layout pro-
gram. The origin of this system is the
bottom left corner of the page. The x-axis
extends to the right, and the y-axis
upward from this point, just like your old
math teacher told you. PostScript uses
pica points, or PostScript points, which
are 1/72 of an inch. The following com-
mands would print the name John Doe in
the address box of an envelope:

0 setgray 401.95 156 moveto
/Helvetica-iso findfont
18 scalefont setfont
(John Doe) show

Starting at the bottom left of the enve-
lope, this would move almost 402 points

(or 5.6 inches) to the right and 156
points (about 2.2 inches) up, to print the
letters in the brackets in the specified
font (Helvetica-iso), and the specified
size, 18 points, from left to right on the
paper.

CPAN provides the PostScript::File and
PostScript::TextBlock modules to simplify
this double Dutch. The former inserts
the PostScript header, as in

%!PS-Adobe-3.0

and takes care of things like the page
orientation, the borders, and the page
order. PostScript::TextBlock accepts
multi-line strings and writes from the
given co-ordinates. However, you can
look forward to many hours of tinkering
with these modules to produce the
desired layout at the right place on the
page.

Envelopes typically use the following
layout: the text block with the sender’s
address will start about 4/5 of an inch
down and to the right of the top left cor-
ner. The text block for the addressee can
extend to within 4/5 of an inch of the
bottom right corner on both the x and y

Linux can do more or less anything.
Read digital images from cameras,
play digital tracks, write CDs – you

can even get USB scanners to work, with
a little help from XSane.

But I had to fire up Windows occasion-
ally to handle one task, and that was
printing my address and the recipients’
addresses from a database for about
20 mail-merged letters a month. I used
to use an ancient Windows program
for that, but not any more! Ghostscript
can quickly turn your plain old house-
hold printer into a mean PostScript
machine.

If your distribution has not already
taken care of setting this up, go to [1] for
a how-to. As Figure 1 shows, I had no
trouble exporting the address database I
had been using on Windows to a
comma-separated format (CSV). All I
had to do now, was generate a PostScript
file for each envelope, and then send
those files to my printer. And that is
child’s play with CPAN modules such as

You do not need either an Office

package or LaTeX to print the

envelopes for a mail-shot. Perl’s Post-

Script modules, an address database

and the script from this article are

the perfect solution for creating

envelopes for mass mailing jobs.

BY MICHAEL SCHILLI

Mail-merged envelopes with Perl and PostScript

Post Letter Perfect

64 December 2003 www.linux-magazine.com

Perl: Envelope LabellingPROGRAMMING

Prajuab M
anklang,visipix.com

Figure 1: The fields in the comma-separated address file

Michael Schilli works
as a Web engineer for
AOL/Netscape in
Mountain View, Cali-
fornia. He wrote “Perl
Power”for Addison-
Wesley and can be
contacted at
mschilli@perlmeister.com. His home-
page is at http://perlmeister.com.

TH
E A

UT
HO

R

direction. In other words, we do not
want to specify the start of the address
field; instead we will simply define the
position of the bottom right corner of the
text block. This ensures that the block
will always end neatly in the same
position, no matter what variables we
use, and no matter how long the address
data may be.

The sample script in Listing 1 defines a
constant $SENDER (line 14). It reads the
address data from a .csv file and outputs
an envelope as shown in Figures 2 or 3
on your printer for each address it finds.

Importing from Windows
$ADDR_CSV in line 13 specifies the
name of the address file, which should
have the same structure as the example
shown in Figure 2. The command to
send a PostScript file to your printer is
defined in $PRINT_CMD in line 17. If you
want to perform a trial run, without
wasting reams of paper, just replace “lpr”
with “ghostview” to send your virtual
envelopes to the screen.

The code in line 19 opens the address
file, and the while block starting in line
22 iterates against the entries, which are
parsed using regular expressions. Instead
of this technique, we could have used
the CPAN Text::CSV_XS module. As the
address entries in our sample file are
extremely simple, and do not use compli-
cated things like quotation marks or
embedded commas, that might be
slightly over the top.

Manual Labor vs. Module
Power
Line 23 interprets any lines that start
with a hash sign # (and whitespace) as
comments. This is handy, if you just
want to select a few entries for printing.
It is quite simple to comment out all the
other entries by pre-pending a hash sign,
#. The split command in line 24 splits
lines where separating commas appear.
map then removes the double quotes. As
the substitution that follows s/”//g; does
not return the result string, $_; is simply
appended.

Line 27 creates the PostScript::File
object that uses the landscape keyword
to rotate the page format. reencode =>
‘ISOLatin1Encoding’ provides support
for all Latin1 characters. The envelope
format is set to Envelope-DL. If you need

a different format, because you use a dif-
ferent size of envelope, you can easily
modify the script. A DIN A 6 envelope
measures about 4 by 6 inches (10.47 by
14.81 cm), so the following definition
should do the trick:

my $ps = new PostScript::File(
landscape => 1,
reencode => 'ISOLatin1Encoding',
width => cm(10.47),
height => cm(14.81),
);

Line 36 stores the address fields in the
variables $last, $first, $city and $str. Line
39 calls the textbox() function, which is
defined further down, and expects a
multiple line string, a font name, a font
size, a the line spacing in PostScript
points. I decided to use Helvetica-iso, as
Helvetica is installed by default. The -iso
suffix also supports accented characters.
textbox() returns three values: a Post-
Script::TextBlock object and the width
and height of the generated text block in
PostScript points.

Following this, line 41 calls the Write()
method of the PostScript::TextBlock
object to create PostScript code. Write()
expects four parameters: width and
height of the text block, and the x and y-
offsets from the origin. The width and
height are provided by the textbox()
function called prior to this.

Offset Thinking
The x-offset (the distance from the left
margin) is 0.8 inches, which we can

express as a centimeter value, cm(2), as
the cm() function defined lower down
converts centimeters to PostScript
points. The y-offset is more complex, as
Write() expects a distance from the bot-
tom margin, whereas we need to
stipulate 2 centimeters from the top mar-
gin. But not to worry: the $ps->get_
width() method of the PostScript::File
objects provides the height of the enve-
lope, and we can simply subtract cm(2)
from this in line 42.

Note that PostScript::File retains the
original notions of width and height,
despite using landscape mode, where the
page is rotated through 90 degrees.
In our case, get_width() returns the
height, and get_height() the width. Write
returns a list, where the first element is
the PostScript code of the text block.
Line 43 adds this code to the current
PostScript page.

The same approach is used for the
addressee: line 46 concatenates the first
and family names, street and city to
create a multiple line string. The
textbox() function uses a slightly larger
font and line spacing this time. The x-
offset from the top left corner of the
textbox to the PostScript origin is
provided by the length of the envelope
($ps ->get_height()) minus the width of
the textbox ($bw) minus 2 centimeters
(cm(2)) for a border. The y-offset, that is
the distance from the top edge of the
textbox to the bottom edge of the enve-
lope is provided by adding 2 centimeters
to the height of the textbox ($bh +
cm(2)).

65www.linux-magazine.com December 2003

PROGRAMMINGPerl: Envelope Labelling

Figure 2: No matter whether the sender has a short…

66 December 2003 www.linux-magazine.com

Perl: Envelope LabellingPROGRAMMING

001 #!/usr/bin/perl
002
#################################
003 # envelope - Print paper

envelopes
004 # Mike Schilli, 2003

(m@perlmeister.com)
005
#################################
006 use warnings;
007 use strict;
008
009 use PostScript::File;
010 use PostScript::TextBlock;
011 use File::Temp qw(tempfile);
012
013 my $ADDR_CSV =

"mailaddr.csv";
014 my $SENDER = q{Steven

Sender,
015 9 Sender Street,
016 San Francisco, CA 94107};
017 my $PRINT_CMD = "lpr";
018
019 open FILE, $ADDR_CSV or
020 die "Cannot open

$ADDR_CSV";
021
022 while(<FILE>) {
023 next if /^\s*#/;
024 my @addr = split /,/, $_;
025 @addr = map { s/"//g; $_; }

@addr;
026
027 my $ps = PostScript::File

->new(
028 landscape => 1,
029 reencode =>

'ISOLatin1Encoding',
030 paper => "Envelope-
DL",
031);
032
033 my ($tmp_fh, $tmp_file) =
034

tempfile(SUFFIX => ".ps");
035
036 my($last, $first, $city,

$str) = @addr;
037
038 # Sender
039 my($bw, $bh, $b) =

textbox($SENDER,
040 "Helvetica-

iso", 10, 12);

041 my ($code) = $b->Write($bw,
$bh, cm(2),

042 $ps-
>get_width() - cm(2));

043 $ps->add_to_page($code);
044
045 # Recipient
046 my $to = "$first

$last\n$str\n\n$city\n";
047 ($bw, $bh, $b) =

textbox($to,
048 "Helvetica-

iso", 18, 20);
049 ($code) = $b->Write($bw,

$bh,
050 $ps->get_height()

- $bw - cm(2),
051 $bh + cm(2));
052 $ps->add_to_page($code);
053
054 # Print to temporary file
055 (my $base = $tmp_file) =~

s/\.ps$//;
056 $ps->output($base);
057
058 # Send to printer
059 system("$PRINT_CMD

$tmp_file") and
060 die "$PRINT_CMD

$tmp_file: $!";
061
062 # Delete
063 unlink "$tmp_file" or
064 die "Cannot unlink

$tmp_file: $!";
065 }
066
067
#################################
068 sub textbox {
069
#################################
070 my($text, $font, $size,

$leading) = @_;
071
072 my $b =

PostScript::TextBlock->new();
073
074 $b->addText(
075 font => $font,
076 text => $text,
077 size => $size,
078 leading => $leading);
079
080 return(tb_width($text,

$font, $size),
081 tb_height($text,

$leading),
082 $b);
083 }
084
085
#################################
086 sub cm {
087
#################################
088 return int($_[0]*72/

2.54);
089 }
090
091
#################################
092 sub tb_width {
093
#################################
094 my($text, $font, $size)

= @_;
095
096 $font =~ s/-iso//;
097
098 my $max_width = 0;
099
100 for(split /\n/, $text) {
101 s/[äÄöÖüÜß]/A/ig;
102 my $w =
103 PostScript::Metrics::

stringwidth(
104 $_,

$font, $size);
105 $max_width = $w if $w

> $max_width;
106 }
107
108 return $max_width;
109 }
110
111
#################################
112 sub tb_height {
113
#################################
114 my($text, $leading) = @_;
115
116 my $lines = 1;
117 $lines++ for $text =~

/\n/g;
118
119 return $lines*$leading;
120 }

Listing 1: envelope

textbox() in line 68 creates a new
PostScript::TextBlock object and calls its
addText method. It expects the font
name, size, the line spacing value ($lead-
ing), and the text to be set.

To determine the size of the textbox
that will be generated, it then calls
tb_width() and tb_height() (tb for text
block) defined further down.

Whereas tb_height simply needs to
multiply the line spacing by the number
of lines passed to it, calculating the
amount of horizontal space used is more
complicated, as the glyphs ot the propor-
tional font are varying in width.

Font Metric Wizardry
Fortunately, there is a module called
PostScript::Metrics with a function called
stringwidth(), that uses embedded font
tables to resolve this issue. The bad news
is, that the module has never heard of
Helvetica-iso. Removing the -iso suffix in
line 96 provides a simple workaround.
But unfortunately, this prevents special
characters from working. This leads to
another workaround in line 101, where
a few special characters are simply
replaced by the letter A. Although this
will not produce precise results, it did
the trick in our example. The width of
the text block is derived from the longest
line in the block.

Admittedly, I did have to resort to a
few hacks this time. But my excuse is
that I had to find a way of working
around the slightly incomplete imple-
mentation of the PostScript::* modules.
It’s a price I was more than happy to pay,
as it allows me to choose the freedom of
Linux and avoids all those superfluous
Windows boot procedures. ■

SELLING OUT FAST!

PROGRAMMINGPerl: Envelope Labelling

[1] Printer installation how-to for Linux:
http://www.linuxprinting.org

[2] Shawn Wallace,“Perl Graphics Program-
ming”¯: O’Reilly, 2002

[3] More PostScript info: http://www.
mathematik.uni-ulm.de/help/pstut/

INFO

Figure 3: … or long name, the offset stays the same

For more information see:

www.linux-magazine.com/Backissues

Short-lived
The tempfile() function from the
File::Temp module creates a temporary
file with the PostScript .ps suffix in line
34, and returns a writeable file handle
and the file name.

The output() method which is called
in line 56 writes the PostScript data to
this file, but as it does not expect the .ps
suffix, the suffix is first removed in line
55 and then the result is written to
$base.

After calling the printer command in
line 59, it is down to line 63 to remove
the now obsolete temporary file.

